Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.13638
Cited By
PyTorch Tabular: A Framework for Deep Learning with Tabular Data
28 April 2021
Manu Joseph
LMTD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PyTorch Tabular: A Framework for Deep Learning with Tabular Data"
18 / 18 papers shown
Title
Representation Learning for Tabular Data: A Comprehensive Survey
Jun-Peng Jiang
Si-Yang Liu
Hao-Run Cai
Qile Zhou
Han-Jia Ye
LMTD
46
0
0
17 Apr 2025
A Survey on Deep Tabular Learning
Shriyank Somvanshi
Subasish Das
Syed Aaqib Javed
Gian Antariksa
Ahmed Hossain
LMTD
34
7
0
15 Oct 2024
Groningen: Spatial Prediction of Rock Gas Saturation by Leveraging Selected and Augmented Well and Seismic Data with Classifier Ensembles
Dmitry Ivlev
36
0
0
14 Oct 2024
MonoSparse-CAM: Harnessing Monotonicity and Sparsity for Enhanced Tree Model Processing on CAMs
Tergel Molom-Ochir
Brady Taylor
Hai Li
Yiran Chen
16
0
0
12 Jul 2024
Fault Detection for agents on power grid topology optimization: A Comprehensive analysis
Malte Lehna
Mohamed Hassouna
Dmitry Degtyar
Sven Tomforde
Christoph Scholz
AI4CE
28
2
0
24 Jun 2024
ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability
Yanming Guo
Charles Guan
Jin Ma
24
2
0
11 Jun 2024
A systematic study comparing hyperparameter optimization engines on tabular data
Balazs Kegl
21
1
0
27 Nov 2023
CAST: Cluster-Aware Self-Training for Tabular Data
Minwook Kim
Juseong Kim
Kibeom Kim
Giltae Song
33
0
0
10 Oct 2023
Bidirectional Attention as a Mixture of Continuous Word Experts
Kevin Christian Wibisono
Yixin Wang
MoE
13
0
0
08 Jul 2023
XMI-ICU: Explainable Machine Learning Model for Pseudo-Dynamic Prediction of Mortality in the ICU for Heart Attack Patients
Munib Mesinovic
Peter Watkinson
Ting Zhu
22
3
0
10 May 2023
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Huaxiu Yao
Caroline Choi
Bochuan Cao
Yoonho Lee
Pang Wei Koh
Chelsea Finn
OOD
19
73
0
25 Nov 2022
GANDALF: Gated Adaptive Network for Deep Automated Learning of Features
Manu Joseph
Harsh Raj
23
9
0
18 Jul 2022
Interpretable Mixture of Experts
Aya Abdelsalam Ismail
Sercan Ö. Arik
Jinsung Yoon
Ankur Taly
S. Feizi
Tomas Pfister
MoE
20
10
0
05 Jun 2022
COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data
Hossein Aboutalebi
Maya Pavlova
M. Shafiee
A. Florea
Andrew Hryniowski
Alexander Wong
22
4
0
24 Apr 2022
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
646
0
05 Oct 2021
Muddling Label Regularization: Deep Learning for Tabular Datasets
Karim Lounici
Katia Méziani
Benjamin Riu
16
6
0
08 Jun 2021
TrustyAI Explainability Toolkit
Rob Geada
Tommaso Teofili
Rui Vieira
Rebecca Whitworth
Daniele Zonca
16
2
0
26 Apr 2021
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Sergei Popov
S. Morozov
Artem Babenko
LMTD
85
294
0
13 Sep 2019
1