ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.14255
  4. Cited By
A block-sparse Tensor Train Format for sample-efficient high-dimensional
  Polynomial Regression

A block-sparse Tensor Train Format for sample-efficient high-dimensional Polynomial Regression

29 April 2021
M. Götte
R. Schneider
Philipp Trunschke
ArXivPDFHTML

Papers citing "A block-sparse Tensor Train Format for sample-efficient high-dimensional Polynomial Regression"

2 / 2 papers shown
Title
From continuous-time formulations to discretization schemes: tensor
  trains and robust regression for BSDEs and parabolic PDEs
From continuous-time formulations to discretization schemes: tensor trains and robust regression for BSDEs and parabolic PDEs
Lorenz Richter
Leon Sallandt
Nikolas Nusken
31
4
0
28 Jul 2023
Convergence bounds for nonlinear least squares and applications to
  tensor recovery
Convergence bounds for nonlinear least squares and applications to tensor recovery
Philipp Trunschke
20
7
0
11 Aug 2021
1