ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.14526
  4. Cited By
Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
  from Incomplete Measurements

Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements

29 April 2021
Tian Tong
Cong Ma
Ashley Prater-Bennette
Erin E. Tripp
Yuejie Chi
ArXivPDFHTML

Papers citing "Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements"

14 / 14 papers shown
Title
Matrix Completion with Graph Information: A Provable Nonconvex Optimization Approach
Matrix Completion with Graph Information: A Provable Nonconvex Optimization Approach
Yao Wang
Yiyang Yang
Kaidong Wang
Shanxing Gao
Xiuwu Liao
63
0
0
12 Feb 2025
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
Zhen Qin
Zhihui Zhu
69
4
0
10 Jun 2024
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
Zhiyu Liu
Zhi-Long Han
Yandong Tang
Xi-Le Zhao
Yao Wang
47
1
0
22 Jan 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled
  Gradient Descent, Even with Overparameterization
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
38
4
0
10 Mar 2023
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis
  Function Decomposition
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
38
4
0
01 Oct 2022
Tensor-on-Tensor Regression: Riemannian Optimization,
  Over-parameterization, Statistical-computational Gap, and Their Interplay
Tensor-on-Tensor Regression: Riemannian Optimization, Over-parameterization, Statistical-computational Gap, and Their Interplay
Yuetian Luo
Anru R. Zhang
29
19
0
17 Jun 2022
Tensor Principal Component Analysis in High Dimensional CP Models
Tensor Principal Component Analysis in High Dimensional CP Models
Yuefeng Han
Cun-Hui Zhang
23
10
0
10 Aug 2021
Guaranteed Functional Tensor Singular Value Decomposition
Guaranteed Functional Tensor Singular Value Decomposition
Rungang Han
Pixu Shi
Anru R. Zhang
32
20
0
09 Aug 2021
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical
  Optimality and Second-Order Convergence
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
Yuetian Luo
Anru R. Zhang
45
18
0
24 Apr 2021
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled
  Gradient Descent
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
19
113
0
18 May 2020
Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements
Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements
Canyi Lu
Jiashi Feng
Zhouchen Lin
Shuicheng Yan
39
102
0
07 Jun 2018
Tensor Decomposition for Signal Processing and Machine Learning
Tensor Decomposition for Signal Processing and Machine Learning
N. Sidiropoulos
L. De Lathauwer
Xiao Fu
Kejun Huang
Evangelos E. Papalexakis
Christos Faloutsos
105
1,342
0
06 Jul 2016
1