Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.00862
Cited By
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
3 May 2021
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks"
18 / 18 papers shown
Title
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Matthias Höfler
Francesco Regazzoni
S. Pagani
Elias Karabelas
Christoph M. Augustin
Gundolf Haase
Gernot Plank
Federica Caforio
22
0
0
06 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
76
0
0
25 Apr 2025
PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks
Marius Almanstötter
Roman Vetter
Dagmar Iber
PINN
27
1
0
07 Apr 2025
Bringing Chemistry to Scale: Loss Weight Adjustment for Multivariate Regression in Deep Learning of Thermochemical Processes
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
J. M. García-Oliver
Bernhard C. Geiger
16
1
0
03 Aug 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
29
29
0
15 Jun 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
27
20
0
03 Mar 2023
Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains
Ali Harandi
Ahmad Moeineddin
Michael Kaliske
Stefanie Reese
Shahed Rezaei
AI4CE
PINN
18
42
0
09 Feb 2023
PINN Training using Biobjective Optimization: The Trade-off between Data Loss and Residual Loss
Fabian Heldmann
Sarah Treibert
Matthias Ehrhardt
K. Klamroth
24
20
0
03 Feb 2023
Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and Comparative Results
Nicholas Sung
Jian Cheng Wong
C. Ooi
Abhishek Gupta
P. Chiu
Yew-Soon Ong
PINN
14
6
0
15 Dec 2022
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
25
16
0
02 Dec 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
21
87
0
15 Nov 2022
A connection between probability, physics and neural networks
Sascha Ranftl
PINN
15
9
0
26 Sep 2022
Enhanced Physics-Informed Neural Networks with Augmented Lagrangian Relaxation Method (AL-PINNs)
Hwijae Son
S. Cho
H. Hwang
PINN
19
41
0
29 Apr 2022
Calibrating constitutive models with full-field data via physics informed neural networks
Craig M. Hamel
K. Long
S. Kramer
AI4CE
25
28
0
30 Mar 2022
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
30
24
0
11 Sep 2021
Training multi-objective/multi-task collocation physics-informed neural network with student/teachers transfer learnings
B. Bahmani
WaiChing Sun
PINN
AI4CE
31
17
0
24 Jul 2021
Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
N. Sukumar
Ankit Srivastava
PINN
AI4CE
41
240
0
17 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
493
0
09 Feb 2021
1