ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.01281
  4. Cited By
Citadel: Protecting Data Privacy and Model Confidentiality for
  Collaborative Learning with SGX

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning with SGX

4 May 2021
Chengliang Zhang
Junzhe Xia
Baichen Yang
Huancheng Puyang
W. Wang
Ruichuan Chen
Istemi Ekin Akkus
Paarijaat Aditya
Feng Yan
    FedML
ArXivPDFHTML

Papers citing "Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning with SGX"

2 / 2 papers shown
Title
secureTF: A Secure TensorFlow Framework
secureTF: A Secure TensorFlow Framework
D. Quoc
Franz Gregor
Sergei Arnautov
Roland Kunkel
Pramod Bhatotia
Christof Fetzer
29
35
0
20 Jan 2021
Slalom: Fast, Verifiable and Private Execution of Neural Networks in
  Trusted Hardware
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
77
355
0
08 Jun 2018
1