ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.02590
  4. Cited By
Reliability Testing for Natural Language Processing Systems

Reliability Testing for Natural Language Processing Systems

6 May 2021
Samson Tan
Shafiq R. Joty
K. Baxter
Araz Taeihagh
G. Bennett
Min-Yen Kan
ArXivPDFHTML

Papers citing "Reliability Testing for Natural Language Processing Systems"

9 / 9 papers shown
Title
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
130
0
15 Dec 2021
NL-Augmenter: A Framework for Task-Sensitive Natural Language
  Augmentation
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh D. Dhole
Varun Gangal
Sebastian Gehrmann
Aadesh Gupta
Zhenhao Li
...
Tianbao Xie
Usama Yaseen
Michael A. Yee
Jing Zhang
Yue Zhang
169
86
0
06 Dec 2021
Automatic Construction of Evaluation Suites for Natural Language
  Generation Datasets
Automatic Construction of Evaluation Suites for Natural Language Generation Datasets
Simon Mille
Kaustubh D. Dhole
Saad Mahamood
Laura Perez-Beltrachini
Varun Gangal
Mihir Kale
Emiel van Miltenburg
Sebastian Gehrmann
ELM
29
22
0
16 Jun 2021
Disembodied Machine Learning: On the Illusion of Objectivity in NLP
Disembodied Machine Learning: On the Illusion of Objectivity in NLP
Zeerak Talat
Smarika Lulz
Joachim Bingel
Isabelle Augenstein
88
51
0
28 Jan 2021
Robustness Gym: Unifying the NLP Evaluation Landscape
Robustness Gym: Unifying the NLP Evaluation Landscape
Karan Goel
Nazneen Rajani
Jesse Vig
Samson Tan
Jason M. Wu
Stephan Zheng
Caiming Xiong
Mohit Bansal
Christopher Ré
AAML
OffRL
OOD
146
136
0
13 Jan 2021
It's Morphin' Time! Combating Linguistic Discrimination with
  Inflectional Perturbations
It's Morphin' Time! Combating Linguistic Discrimination with Inflectional Perturbations
Samson Tan
Shafiq R. Joty
Min-Yen Kan
R. Socher
158
103
0
09 May 2020
Are We Modeling the Task or the Annotator? An Investigation of Annotator
  Bias in Natural Language Understanding Datasets
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva
Yoav Goldberg
Jonathan Berant
237
319
0
21 Aug 2019
Generating Natural Language Adversarial Examples
Generating Natural Language Adversarial Examples
M. Alzantot
Yash Sharma
Ahmed Elgohary
Bo-Jhang Ho
Mani B. Srivastava
Kai-Wei Chang
AAML
245
914
0
21 Apr 2018
Adversarial Example Generation with Syntactically Controlled Paraphrase
  Networks
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks
Mohit Iyyer
John Wieting
Kevin Gimpel
Luke Zettlemoyer
AAML
GAN
185
711
0
17 Apr 2018
1