Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.02968
Cited By
This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks
5 May 2021
Adrian Hoffmann
Claudio Fanconi
Rahul Rade
Jonas Köhler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks"
9 / 9 papers shown
Title
MERA: Multimodal and Multiscale Self-Explanatory Model with Considerably Reduced Annotation for Lung Nodule Diagnosis
Jiahao Lu
Chong Yin
Silvia Ingala
Kenny Erleben
M. Nielsen
S. Darkner
51
0
0
27 Apr 2025
A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations
S. Saralajew
Ashish Rana
T. Villmann
Ammar Shaker
OOD
87
1
0
20 Dec 2024
ProtoArgNet: Interpretable Image Classification with Super-Prototypes and Argumentation [Technical Report]
Hamed Ayoobi
Nico Potyka
Francesca Toni
36
2
0
26 Nov 2023
Take 5: Interpretable Image Classification with a Handful of Features
Thomas Norrenbrock
Marco Rudolph
Bodo Rosenhahn
FAtt
40
7
0
23 Mar 2023
ICICLE: Interpretable Class Incremental Continual Learning
Dawid Rymarczyk
Joost van de Weijer
Bartosz Zieliñski
Bartlomiej Twardowski
CLL
32
28
0
14 Mar 2023
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
18
302
0
01 Nov 2021
Toward a Unified Framework for Debugging Concept-based Models
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
Stefano Teso
20
4
0
23 Sep 2021
1