Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.04808
Cited By
DP-SIGNSGD: When Efficiency Meets Privacy and Robustness
11 May 2021
Lingjuan Lyu
FedML
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DP-SIGNSGD: When Efficiency Meets Privacy and Robustness"
7 / 7 papers shown
Title
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
65
4
0
01 Aug 2023
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
27
46
0
23 Aug 2022
Dropout is NOT All You Need to Prevent Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
22
12
0
12 Aug 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
22
20
0
12 Feb 2022
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
18
9
0
19 Dec 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
175
355
0
07 Dec 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
191
434
0
04 Mar 2020
1