Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.04854
Cited By
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
11 May 2021
Ryan Henderson
Djork-Arné Clevert
F. Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity"
16 / 16 papers shown
Title
Recent advances in interpretable machine learning using structure-based protein representations
L. Vecchietti
Minji Lee
Begench Hangeldiyev
Hyunkyu Jung
Hahnbeom Park
Tae-Kyun Kim
Meeyoung Cha
Ho Min Kim
AI4CE
21
1
0
26 Sep 2024
Advancements in Molecular Property Prediction: A Survey of Single and Multimodal Approaches
Tanya Liyaqat
T. Ahmad
Chandni Saxena
32
2
0
18 Aug 2024
Graph AI in Medicine
Ruth Johnson
Michelle M. Li
Ayush Noori
Owen Queen
Marinka Zitnik
21
3
0
20 Oct 2023
Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency
Owen Queen
Thomas Hartvigsen
Teddy Koker
Huan He
Theodoros Tsiligkaridis
Marinka Zitnik
AI4TS
37
17
0
03 Jun 2023
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
28
23
0
02 Jun 2023
Streamlining models with explanations in the learning loop
Francesco Lomuscio
P. Bajardi
Alan Perotti
E. Amparore
FAtt
21
0
0
15 Feb 2023
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
16
8
0
23 Nov 2022
Graph-based Molecular Representation Learning
Zhichun Guo
Kehan Guo
B. Nan
Yijun Tian
Roshni G. Iyer
...
Olaf Wiest
Xiangliang Zhang
Wei Wang
Chuxu Zhang
Nitesh V. Chawla
AI4CE
20
60
0
08 Jul 2022
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks
Simon Ohler
Daniel Brady
Winfried Lotzsch
M. Fleischhauer
Johannes Otterbach
AI4CE
16
1
0
05 Jul 2022
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks
Winfried Lotzsch
Simon Ohler
Johannes Otterbach
AI4CE
22
18
0
28 Jun 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
25
25
0
20 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
Physics-Informed Graph Learning
Ciyuan Peng
Feng Xia
Vidya Saikrishna
Huan Liu
PINN
AI4CE
24
6
0
22 Feb 2022
Explaining, Evaluating and Enhancing Neural Networks' Learned Representations
Marco Bertolini
Djork-Arné Clevert
F. Montanari
FAtt
4
5
0
18 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
14
196
0
31 Jan 2022
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
88
224
0
24 Oct 2020
1