ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.05874
  4. Cited By
The Federated Tumor Segmentation (FeTS) Challenge

The Federated Tumor Segmentation (FeTS) Challenge

12 May 2021
Sarthak Pati
Ujjwal Baid
M. Zenk
Brandon Edwards
Micah J. Sheller
G. A. Reina
Patrick Foley
Alexey Gruzdev
Jason Martin
Shadi Albarqouni
Yong Chen
R. Shinohara
Annika Reinke
David Zimmerer
John B. Freymann
J. Kirby
Christos Davatzikos
Rivka R. Colen
Aikaterini Kotrotsou
Daniel S. Marcus
Mikhail Milchenko
Arash Nazer
Hassan Fathallah-Shaykh
Roland Wiest
Roland Wiest Andras Jakab
M. Weber
A. Mahajan
Lena Maier-Hein
Jens Kleesiek
Bjoern H. Menze
Klaus Maier-Hein
Spyridon Bakas
    FedML
    OOD
ArXivPDFHTML

Papers citing "The Federated Tumor Segmentation (FeTS) Challenge"

38 / 38 papers shown
Title
Election of Collaborators via Reinforcement Learning for Federated Brain Tumor Segmentation
Election of Collaborators via Reinforcement Learning for Federated Brain Tumor Segmentation
Muhammad Irfan Khan
Elina Kontio
Suleiman A. Khan
Mojtaba Jafaritadi
FedML
39
0
0
31 Dec 2024
Recommender Engine Driven Client Selection in Federated Brain Tumor Segmentation
Recommender Engine Driven Client Selection in Federated Brain Tumor Segmentation
Muhammad Irfan Khan
Elina Kontio
Suleiman A. Khan
Mojtaba Jafaritadi
FedML
21
0
0
31 Dec 2024
A cautionary tale on the cost-effectiveness of collaborative AI in
  real-world medical applications
A cautionary tale on the cost-effectiveness of collaborative AI in real-world medical applications
Francesco Cremonesi
Lucia Innocenti
Sebastien Ourselin
Vicky Goh
Michela Antonelli
Marco Lorenzi
FedML
102
0
0
09 Dec 2024
FedPID: An Aggregation Method for Federated Learning
FedPID: An Aggregation Method for Federated Learning
Leon Mächler
Gustav Grimberg
Ivan Ezhov
Manuel Nickel
Suprosanna Shit
David Naccache
Johannes C. Paetzold
FedML
21
0
0
04 Nov 2024
Selecting the Best Sequential Transfer Path for Medical Image
  Segmentation with Limited Labeled Data
Selecting the Best Sequential Transfer Path for Medical Image Segmentation with Limited Labeled Data
Jingyun Yang
J. Wang
Guoqing Zhang
Yang Li
18
1
0
09 Oct 2024
Federated brain tumor segmentation: an extensive benchmark
Federated brain tumor segmentation: an extensive benchmark
Matthis Manthe
Stefan Duffner
Carole Lartizien
OOD
FedML
35
4
0
07 Oct 2024
GaNDLF-Synth: A Framework to Democratize Generative AI for (Bio)Medical
  Imaging
GaNDLF-Synth: A Framework to Democratize Generative AI for (Bio)Medical Imaging
Sarthak Pati
Szymon Mazurek
Spyridon Bakas
MedIm
21
0
0
30 Sep 2024
Future-Proofing Medical Imaging with Privacy-Preserving Federated
  Learning and Uncertainty Quantification: A Review
Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review
Nikolas Koutsoubis
Asim Waqas
Yasin Yilmaz
R. Ramachandran
M. Schabath
Ghulam Rasool
26
1
0
24 Sep 2024
Centralized and Federated Heart Disease Classification Models Using UCI
  Dataset and their Shapley-value Based Interpretability
Centralized and Federated Heart Disease Classification Models Using UCI Dataset and their Shapley-value Based Interpretability
Mario Padilla Rodriguez
Mohamed Nafea
FedML
28
0
0
12 Aug 2024
Non-parametric regularization for class imbalance federated medical
  image classification
Non-parametric regularization for class imbalance federated medical image classification
Jeffry Wicaksana
Zengqiang Yan
Kwang-Ting Cheng
FedML
26
0
0
17 Jul 2024
Harvesting Private Medical Images in Federated Learning Systems with
  Crafted Models
Harvesting Private Medical Images in Federated Learning Systems with Crafted Models
Shanghao Shi
Md Shahedul Haque
Abhijeet Parida
M. Linguraru
Y. T. Hou
Syed Muhammad Anwar
W. Lou
FedML
33
3
0
13 Jul 2024
Privacy Preserving Federated Learning in Medical Imaging with
  Uncertainty Estimation
Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation
Nikolas Koutsoubis
Yasin Yilmaz
Ravi P. Ramachandran
M. Schabath
Ghulam Rasool
34
8
0
18 Jun 2024
Comparative Benchmarking of Failure Detection Methods in Medical Image
  Segmentation: Unveiling the Role of Confidence Aggregation
Comparative Benchmarking of Failure Detection Methods in Medical Image Segmentation: Unveiling the Role of Confidence Aggregation
M. Zenk
David Zimmerer
Fabian Isensee
Jeremias Traub
T. Norajitra
Paul F. Jäger
Klaus H. Maier-Hein
37
4
0
05 Jun 2024
Real-World Federated Learning in Radiology: Hurdles to overcome and
  Benefits to gain
Real-World Federated Learning in Radiology: Hurdles to overcome and Benefits to gain
Markus R. Bujotzek
Unal Akunal
Stefan Denner
Peter Neher
M. Zenk
...
Jens Kleesiek
Tobias Penzkofer
Klaus H. Maier-Hein
R. Braren
Andreas Bucher
AI4CE
29
2
0
15 May 2024
FedFMS: Exploring Federated Foundation Models for Medical Image
  Segmentation
FedFMS: Exploring Federated Foundation Models for Medical Image Segmentation
Yuxi Liu
Guibo Luo
Yuesheng Zhu
FedML
MedIm
26
4
0
08 Mar 2024
Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume
  Segmentation
Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume Segmentation
Y. Huang
Wanqing Xie
Mingzhen Li
Mingmei Cheng
Jinzhou Wu
Weixiao Wang
Jane You
Xiaofeng Liu
FedML
26
3
0
23 Oct 2023
Whole-brain radiomics for clustered federated personalization in brain
  tumor segmentation
Whole-brain radiomics for clustered federated personalization in brain tumor segmentation
Matthis Manthe
Stefan Duffner
Carole Lartizien
FedML
27
2
0
17 Oct 2023
FCA: Taming Long-tailed Federated Medical Image Classification by
  Classifier Anchoring
FCA: Taming Long-tailed Federated Medical Image Classification by Classifier Anchoring
Jeffry Wicaksana
Zengqiang Yan
Kwang-Ting Cheng
FedML
27
5
0
01 May 2023
FedPIDAvg: A PID controller inspired aggregation method for Federated
  Learning
FedPIDAvg: A PID controller inspired aggregation method for Federated Learning
Leon Mächler
Ivan Ezhov
Suprosanna Shit
Johannes C. Paetzold
FedML
17
7
0
24 Apr 2023
Federated Alternate Training (FAT): Leveraging Unannotated Data Silos in
  Federated Segmentation for Medical Imaging
Federated Alternate Training (FAT): Leveraging Unannotated Data Silos in Federated Segmentation for Medical Imaging
Erum Mushtaq
Yavuz Faruk Bakman
Jie Ding
A. Avestimehr
FedML
14
8
0
18 Apr 2023
Regularized Weight Aggregation in Networked Federated Learning for
  Glioblastoma Segmentation
Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation
Muhammad Irfan Khan
Mohammad Ayyaz Azeem
E. Alhoniemi
Elina Kontio
Suleiman A. Khan
Mojtaba Jafaritadi
FedML
22
3
0
30 Jan 2023
Finding the Most Transferable Tasks for Brain Image Segmentation
Finding the Most Transferable Tasks for Brain Image Segmentation
Yicong Li
Yang Tan
Jing Yang
Yang Li
Xiaoping Zhang
22
0
0
03 Jan 2023
Robust Learning Protocol for Federated Tumor Segmentation Challenge
Robust Learning Protocol for Federated Tumor Segmentation Challenge
Ambrish Rawat
Giulio Zizzo
S. Kadhe
J. Epperlein
S. Braghin
FedML
11
3
0
16 Dec 2022
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
  Realistic Healthcare Settings
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings
Jean Ogier du Terrail
Samy Ayed
Edwige Cyffers
Felix Grimberg
Chaoyang He
...
Sai Praneeth Karimireddy
Marco Lorenzi
Giovanni Neglia
Marc Tommasi
M. Andreux
FedML
36
142
0
10 Oct 2022
FedGraph: an Aggregation Method from Graph Perspective
FedGraph: an Aggregation Method from Graph Perspective
Zhifang Deng
Xiaohong Huang
Dandan Li
Xueguang Yuan
FedML
22
0
0
06 Oct 2022
Hybrid Window Attention Based Transformer Architecture for Brain Tumor
  Segmentation
Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation
Himashi Peiris
Munawar Hayat
Zhaolin Chen
Gary Egan
Mehrtash Harandi
MedIm
6
4
0
16 Sep 2022
One Model to Unite Them All: Personalized Federated Learning of
  Multi-Contrast MRI Synthesis
One Model to Unite Them All: Personalized Federated Learning of Multi-Contrast MRI Synthesis
Onat Dalmaz
Muhammad Usama Mirza
Gokberk Elmas
Muzaffer Özbey
S. Dar
Emir Ceyani
Salman Avestimehr
Tolga cCukur
MedIm
23
39
0
13 Jul 2022
Artificial Intelligence Solution for Effective Treatment Planning for
  Glioblastoma Patients
Artificial Intelligence Solution for Effective Treatment Planning for Glioblastoma Patients
Vikram Goddla
21
0
0
09 Mar 2022
Evaluation and Analysis of Different Aggregation and Hyperparameter
  Selection Methods for Federated Brain Tumor Segmentation
Evaluation and Analysis of Different Aggregation and Hyperparameter Selection Methods for Federated Brain Tumor Segmentation
Ece Isik Polat
Gorkem Polat
Altan Koçyiğit
A. Temi̇zel
OOD
FedML
17
4
0
16 Feb 2022
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in
  Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking
  Results
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
Raghav Mehta
Angelos Filos
Ujjwal Baid
C. Sako
Richard McKinley
...
Christos Davatzikos
Bjoern H. Menze
Spyridon Bakas
Y. Gal
Tal Arbel
UQCV
12
44
0
19 Dec 2021
FedCostWAvg: A new averaging for better Federated Learning
FedCostWAvg: A new averaging for better Federated Learning
Leon Mächler
Ivan Ezhov
Florian Kofler
Suprosanna Shit
Johannes C. Paetzold
T. Loehr
Benedikt Wiestler
Bjoern H. Menze
FedML
OOD
17
13
0
16 Nov 2021
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
  using Federated Evaluation
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
Alexandros Karargyris
Renato Umeton
Micah J. Sheller
Alejandro Aristizabal
Johnu George
...
Poonam Yadav
Michael Rosenthal
M. Loda
Jason M. Johnson
Peter Mattson
FedML
46
71
0
29 Sep 2021
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation
  and Radiogenomic Classification
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
Ujjwal Baid
S. Ghodasara
S. Mohan
Michel Bilello
Evan Calabrese
...
M. Weber
A. Mahajan
Bjoern H. Menze
Adam Flanders
Spyridon Bakas
20
606
0
05 Jul 2021
OpenFL: An open-source framework for Federated Learning
OpenFL: An open-source framework for Federated Learning
G. A. Reina
Alexey Gruzdev
Patrick Foley
O. Perepelkina
Mansi Sharma
...
Sarthak Pati
Prakash Narayana Moorthy
Shih-Han Wang
Prashant Shah
Spyridon Bakas
FedML
AIFin
14
105
0
13 May 2021
Deep and Statistical Learning in Biomedical Imaging: State of the Art in
  3D MRI Brain Tumor Segmentation
Deep and Statistical Learning in Biomedical Imaging: State of the Art in 3D MRI Brain Tumor Segmentation
K. R. M. Fernando
Cris P Tsokos
15
53
0
09 Mar 2021
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable
  End-to-End Clinical Workflows in Medical Imaging
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging
Sarthak Pati
Siddhesh P. Thakur
İbrahim Ethem Hamamcı
Ujjwal Baid
Bhakti Baheti
...
D. Kontos
Alexandros Karargyris
Renato Umeton
Peter Mattson
Spyridon Bakas
LM&MA
MedIm
74
44
0
26 Feb 2021
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,703
0
18 Mar 2020
The Liver Tumor Segmentation Benchmark (LiTS)
The Liver Tumor Segmentation Benchmark (LiTS)
Patrick Bilic
P. Christ
Hongwei Bran Li
Eugene Vorontsov
Avi Ben-Cohen
...
L. Soler
Bram van Ginneken
H. Greenspan
Leo Joskowicz
Bjoern H. Menze
11
988
0
13 Jan 2019
1