ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06126
  4. Cited By
Value-at-Risk Optimization with Gaussian Processes

Value-at-Risk Optimization with Gaussian Processes

13 May 2021
Q. Nguyen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
ArXiv (abs)PDFHTML

Papers citing "Value-at-Risk Optimization with Gaussian Processes"

17 / 17 papers shown
Title
Spectral Mixture Kernels for Bayesian Optimization
Yi Zhang
Cheng Hua
GP
62
0
0
23 May 2025
Real-Time Roadway Obstacle Detection for Electric Scooters Using Deep Learning and Multi-Sensor Fusion
Real-Time Roadway Obstacle Detection for Electric Scooters Using Deep Learning and Multi-Sensor Fusion
Zeyang Zheng
Arman Hosseini
Dong Chen
Omid Shoghli
Arsalan Heydarian
71
0
0
04 Apr 2025
Prompt Optimization with Human Feedback
Prompt Optimization with Human Feedback
Xiaoqiang Lin
Zhongxiang Dai
Arun Verma
See-Kiong Ng
Patrick Jaillet
K. H. Low
AAML
95
12
0
27 May 2024
Stochastic Bayesian Optimization with Unknown Continuous Context
  Distribution via Kernel Density Estimation
Stochastic Bayesian Optimization with Unknown Continuous Context Distribution via Kernel Density Estimation
Xiaobin Huang
Lei Song
Ke Xue
Chao Qian
76
3
0
16 Dec 2023
Batch Bayesian Optimization for Replicable Experimental Design
Batch Bayesian Optimization for Replicable Experimental Design
Zhongxiang Dai
Q. Nguyen
Sebastian Shenghong Tay
Daisuke Urano
Richalynn Leong
Bryan Kian Hsiang Low
Patrick Jaillet
37
5
0
02 Nov 2023
Training-Free Neural Active Learning with Initialization-Robustness
  Guarantees
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
87
7
0
07 Jun 2023
Bounding Box-based Multi-objective Bayesian Optimization of Risk
  Measures under Input Uncertainty
Bounding Box-based Multi-objective Bayesian Optimization of Risk Measures under Input Uncertainty
Yu Inatsu
Shion Takeno
Hiroyuki Hanada
Kazuki Iwata
Ichiro Takeuchi
38
4
0
27 Jan 2023
Data-Driven Offline Decision-Making via Invariant Representation
  Learning
Data-Driven Offline Decision-Making via Invariant Representation Learning
Qi
Yi-Hsun Su
Aviral Kumar
Sergey Levine
OffRL
91
22
0
21 Nov 2022
Sample-Then-Optimize Batch Neural Thompson Sampling
Sample-Then-Optimize Batch Neural Thompson Sampling
Zhongxiang Dai
Yao Shu
Bryan Kian Hsiang Low
Patrick Jaillet
AAML
67
25
0
13 Oct 2022
Bayesian Optimization under Stochastic Delayed Feedback
Bayesian Optimization under Stochastic Delayed Feedback
Arun Verma
Zhongxiang Dai
Bryan Kian Hsiang Low
80
12
0
19 Jun 2022
Robust Multi-Objective Bayesian Optimization Under Input Noise
Robust Multi-Objective Bayesian Optimization Under Input Noise
Sam Daulton
Sait Cakmak
Maximilian Balandat
Michael A. Osborne
Enlu Zhou
E. Bakshy
AAML
92
38
0
15 Feb 2022
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
  Process Bandits
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits
Ilija Bogunovic
Zihan Li
Andreas Krause
Jonathan Scarlett
79
9
0
03 Feb 2022
Bayesian Optimization for Distributionally Robust Chance-constrained
  Problem
Bayesian Optimization for Distributionally Robust Chance-constrained Problem
Yu Inatsu
Shion Takeno
Masayuki Karasuyama
Ichiro Takeuchi
68
13
0
31 Jan 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
99
36
0
02 Jan 2022
Risk-averse Heteroscedastic Bayesian Optimization
Risk-averse Heteroscedastic Bayesian Optimization
A. Makarova
Ilnura N. Usmanova
Ilija Bogunovic
Andreas Krause
79
36
0
05 Nov 2021
Differentially Private Federated Bayesian Optimization with Distributed
  Exploration
Differentially Private Federated Bayesian Optimization with Distributed Exploration
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
75
43
0
27 Oct 2021
Bayesian Quantile and Expectile Optimisation
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
62
21
0
12 Jan 2020
1