Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.06351
Cited By
Convergence and Implicit Bias of Gradient Flow on Overparametrized Linear Networks
13 May 2021
Hancheng Min
Salma Tarmoun
René Vidal
Enrique Mallada
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence and Implicit Bias of Gradient Flow on Overparametrized Linear Networks"
8 / 8 papers shown
Title
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
Ziqing Xu
Hancheng Min
Salma Tarmoun
Enrique Mallada
Rene Vidal
78
0
0
16 May 2025
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
171
39
0
25 Aug 2020
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
68
332
0
13 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
64
500
0
31 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
68
384
0
30 May 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
55
94
0
24 Jan 2019
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
136
769
0
12 Nov 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
140
652
0
03 Aug 2018
1