Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.10056
Cited By
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
20 May 2021
Zhuangdi Zhu
Junyuan Hong
Jiayu Zhou
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-Free Knowledge Distillation for Heterogeneous Federated Learning"
50 / 82 papers shown
Title
Privacy-aware Berrut Approximated Coded Computing applied to general distributed learning
Xavier Martínez-Luaña
M. Fernández-Veiga
R. Redondo
Ana Fernández Vilas
FedML
24
0
0
10 May 2025
Lazy But Effective: Collaborative Personalized Federated Learning with Heterogeneous Data
Ljubomir Rokvic
Panayiotis Danassis
Boi Faltings
FedML
35
0
0
05 May 2025
Towards One-shot Federated Learning: Advances, Challenges, and Future Directions
Flora Amato
Lingyu Qiu
Mohammad Tanveer
S. Cuomo
F. Giampaolo
F. Piccialli
FedML
55
0
0
05 May 2025
Soft-Label Caching and Sharpening for Communication-Efficient Federated Distillation
Kitsuya Azuma
Takayuki Nishio
Yuichi Kitagawa
Wakako Nakano
Takahito Tanimura
FedML
70
0
0
28 Apr 2025
A Novel Algorithm for Personalized Federated Learning: Knowledge Distillation with Weighted Combination Loss
Hengrui Hu
Anai N. Kothari
Anjishnu Banerjee
FedML
38
0
0
06 Apr 2025
Corrected with the Latest Version: Make Robust Asynchronous Federated Learning Possible
Chaoyi Lu
Yiding Sun
Pengbo Li
Zhichuan Yang
FedML
34
0
0
05 Apr 2025
CityGS-X: A Scalable Architecture for Efficient and Geometrically Accurate Large-Scale Scene Reconstruction
Yuanyuan Gao
Hao Li
Jiaqi Chen
Zhengyu Zou
Zhihang Zhong
Dingwen Zhang
Xiao-Fu Sun
Junwei Han
3DGS
55
0
0
29 Mar 2025
You Are Your Own Best Teacher: Achieving Centralized-level Performance in Federated Learning under Heterogeneous and Long-tailed Data
Shanshan Yan
Zexi Li
Chao-Xiang Wu
Meng Pang
Yang Lu
Yan Yan
Hanzi Wang
FedML
61
0
0
10 Mar 2025
Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
Yanbiao Ma
Wei-Ming Dai
Wenke Huang
Jiayi Chen
94
0
0
09 Mar 2025
FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients
Leming Shen
Qiang Yang
Kaiyan Cui
Yuanqing Zheng
Xiao-Yong Wei
Jianwei Liu
Jinsong Han
FedML
64
11
0
28 Feb 2025
Accurate Forgetting for Heterogeneous Federated Continual Learning
Abudukelimu Wuerkaixi
Sen Cui
J. Zhang
Kunda Yan
Bo Han
Gang Niu
Lei Fang
Changshui Zhang
Masashi Sugiyama
108
8
0
20 Feb 2025
Secure Federated Data Distillation
Marco Arazzi
Mert Cihangiroglu
S. Nicolazzo
Antonino Nocera
FedML
DD
96
0
0
19 Feb 2025
Efficient Learning Under Density Shift in Incremental Settings Using Cramér-Rao-Based Regularization
Behraj Khan
Behroz Mirza
Nouman Durrani
T. Syed
60
0
0
18 Feb 2025
Dark Distillation: Backdooring Distilled Datasets without Accessing Raw Data
Ziyuan Yang
Ming Yan
Yi Zhang
Joey Tianyi Zhou
DD
56
0
0
06 Feb 2025
BrainGuard: Privacy-Preserving Multisubject Image Reconstructions from Brain Activities
Zhibo Tian
Ruijie Quan
Fan Ma
Kun Zhan
Yi Yang
31
1
0
24 Jan 2025
FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning
Yanbing Zhou
Xiangmou Qu
Chenlong You
Jiyang Zhou
Jingyue Tang
Xin Zheng
Chunmao Cai
Yingbo Wu
FedML
50
1
0
09 Jan 2025
Optimizing Personalized Federated Learning through Adaptive Layer-Wise Learning
Weihang Chen
Jie Ren
Zhiqiang Li
Ling Gao
Z. Wang
AI4CE
120
0
0
10 Dec 2024
A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning
Jun Bai
Yiliao Song
Di Wu
Atul Sajjanhar
Yong Xiang
Wei Zhou
Xiaohui Tao
Yan Li
Y. Li
FedML
53
0
0
28 Oct 2024
Federated Learning with Label-Masking Distillation
Jianghu Lu
Shikun Li
Kexin Bao
Pengju Wang
Zhenxing Qian
Shiming Ge
FedML
37
10
0
20 Sep 2024
Few-Shot Class-Incremental Learning with Non-IID Decentralized Data
Cuiwei Liu
Siang Xu
Huaijun Qiu
Jing Zhang
Zhi Liu
Liang Zhao
CLL
32
0
0
18 Sep 2024
On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness
Shengkun Zhu
Jinshan Zeng
Sheng Wang
Yuan Sun
Xiaodong Li
Yuan Yao
Zhiyong Peng
44
0
0
23 Jul 2024
Federated Distillation for Medical Image Classification: Towards Trustworthy Computer-Aided Diagnosis
Sufen Ren
Yule Hu
Shengchao Chen
Guanjun Wang
29
1
0
02 Jul 2024
FDLoRA: Personalized Federated Learning of Large Language Model via Dual LoRA Tuning
Jiaxing Qi
Zhongzhi Luan
Shaohan Huang
Carol J. Fung
Hailong Yang
Depei Qian
32
12
0
12 Jun 2024
A Systematic Review of Federated Generative Models
Ashkan Vedadi Gargary
Emiliano De Cristofaro
AI4CE
36
2
0
26 May 2024
Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors
Chun-Yin Huang
Kartik Srinivas
Xin Zhang
Xiaoxiao Li
DD
50
6
0
19 May 2024
Towards Energy-Aware Federated Learning via MARL: A Dual-Selection Approach for Model and Client
Jun Xia
Yi Zhang
Yiyu Shi
29
0
0
13 May 2024
Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data
Mahdi Morafah
M. Reisser
Bill Lin
Christos Louizos
FedML
34
5
0
13 May 2024
FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph Federated Learning
Yinlin Zhu
Xunkai Li
Zhengyu Wu
Di Wu
Miao Hu
Ronghua Li
FedML
29
5
0
22 Apr 2024
On the Byzantine-Resilience of Distillation-Based Federated Learning
Christophe Roux
Max Zimmer
S. Pokutta
AAML
49
1
0
19 Feb 2024
Federated Continual Learning via Knowledge Fusion: A Survey
Xin Yang
Hao Yu
Xin Gao
Hao Wang
Junbo Zhang
Tianrui Li
FedML
30
31
0
27 Dec 2023
Straggler-resilient Federated Learning: Tackling Computation Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network
Student Member Ieee Hongda Wu
F. I. C. V. Ping Wang
Aswartha Narayana
FedML
44
1
0
16 Nov 2023
Rethinking Client Drift in Federated Learning: A Logit Perspective
Yu-bao Yan
Chun-Mei Feng
Senior Member Ieee Wangmeng Zuo Senior Member Ieee Mang Ye
Mong Goh
Ping Li
Rick Siow
Lei Zhu
F. I. C. L. Philip Chen
FedML
33
8
0
20 Aug 2023
Feature Matching Data Synthesis for Non-IID Federated Learning
Zijian Li
Yuchang Sun
Jiawei Shao
Yuyi Mao
Jessie Hui Wang
Jun Zhang
26
19
0
09 Aug 2023
UPFL: Unsupervised Personalized Federated Learning towards New Clients
Tiandi Ye
Cen Chen
Yinggui Wang
Xiang Li
Ming Gao
FedML
24
3
0
29 Jul 2023
Mitigating Cross-client GANs-based Attack in Federated Learning
Hong Huang
Xinyu Lei
Tao Xiang
AAML
45
1
0
25 Jul 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
37
23
0
20 Jul 2023
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
36
244
0
20 Jul 2023
An Efficient Virtual Data Generation Method for Reducing Communication in Federated Learning
Cheng Yang
Xue Yang
Dongxian Wu
Xiaohu Tang
FedML
27
0
0
21 Jun 2023
Structured Cooperative Learning with Graphical Model Priors
Shuang-Yang Li
Tianyi Zhou
Xinmei Tian
Dacheng Tao
30
0
0
16 Jun 2023
Deep Equilibrium Models Meet Federated Learning
A. Gkillas
D. Ampeliotis
K. Berberidis
FedML
29
3
0
29 May 2023
Collaborative Learning via Prediction Consensus
Dongyang Fan
Celestine Mendler-Dünner
Martin Jaggi
FedML
29
7
0
29 May 2023
Learning to Learn from APIs: Black-Box Data-Free Meta-Learning
Zixuan Hu
Li Shen
Zhenyi Wang
Baoyuan Wu
Chun Yuan
Dacheng Tao
47
7
0
28 May 2023
Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination
Ming Hu
Zhihao Yue
Zhiwei Ling
Cheng Chen
Yihao Huang
Xian Wei
Xiang Lian
Yang Liu
Mingsong Chen
FedML
19
8
0
18 May 2023
Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts
Kun Jin
Tongxin Yin
Zhong Chen
Zeyu Sun
Xueru Zhang
Yang Liu
Mingyan D. Liu
OOD
FedML
15
6
0
08 May 2023
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
24
5
0
02 May 2023
Homogenizing Non-IID datasets via In-Distribution Knowledge Distillation for Decentralized Learning
Deepak Ravikumar
Gobinda Saha
Sai Aparna Aketi
Kaushik Roy
11
1
0
09 Apr 2023
Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning
Zixuan Hu
Li Shen
Zhenyi Wang
Tongliang Liu
Chun Yuan
Dacheng Tao
47
4
0
20 Mar 2023
Provable Data Subset Selection For Efficient Neural Network Training
M. Tukan
Samson Zhou
Alaa Maalouf
Daniela Rus
Vladimir Braverman
Dan Feldman
MLT
23
9
0
09 Mar 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
47
0
21 Feb 2023
Clustered Data Sharing for Non-IID Federated Learning over Wireless Networks
Gang Hu
Yinglei Teng
Nan Wang
F. Yu
FedML
19
5
0
17 Feb 2023
1
2
Next