ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.10719
  4. Cited By
Can We Faithfully Represent Masked States to Compute Shapley Values on a
  DNN?

Can We Faithfully Represent Masked States to Compute Shapley Values on a DNN?

22 May 2021
J. Ren
Zhanpeng Zhou
Qirui Chen
Quanshi Zhang
    FAtt
    TDI
ArXivPDFHTML

Papers citing "Can We Faithfully Represent Masked States to Compute Shapley Values on a DNN?"

4 / 4 papers shown
Title
Defining and Extracting generalizable interaction primitives from DNNs
Defining and Extracting generalizable interaction primitives from DNNs
Lu Chen
Siyu Lou
Benhao Huang
Quanshi Zhang
26
9
0
29 Jan 2024
Understanding and Unifying Fourteen Attribution Methods with Taylor
  Interactions
Understanding and Unifying Fourteen Attribution Methods with Taylor Interactions
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Ziwei Yang
Zheyang Li
Quanshi Zhang
FAtt
TDI
49
22
0
02 Mar 2023
Discovering and Explaining the Representation Bottleneck of DNNs
Discovering and Explaining the Representation Bottleneck of DNNs
Huiqi Deng
Qihan Ren
Hao Zhang
Quanshi Zhang
37
59
0
11 Nov 2021
A causal framework for explaining the predictions of black-box
  sequence-to-sequence models
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
221
201
0
06 Jul 2017
1