ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.12686
  4. Cited By
Dynamic Probabilistic Pruning: A general framework for
  hardware-constrained pruning at different granularities

Dynamic Probabilistic Pruning: A general framework for hardware-constrained pruning at different granularities

26 May 2021
L. Gonzalez-Carabarin
Iris A. M. Huijben
Bastian Veeling
A. Schmid
Ruud J. G. van Sloun
ArXivPDFHTML

Papers citing "Dynamic Probabilistic Pruning: A general framework for hardware-constrained pruning at different granularities"

1 / 1 papers shown
Title
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
26
93
0
04 Oct 2021
1