Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.13205
Cited By
Hamiltonian Deep Neural Networks Guaranteeing Non-vanishing Gradients by Design
27 May 2021
C. Galimberti
Luca Furieri
Liang Xu
Giancarlo Ferrari-Trecate
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hamiltonian Deep Neural Networks Guaranteeing Non-vanishing Gradients by Design"
9 / 9 papers shown
Title
On Dissipativity of Cross-Entropy Loss in Training ResNets
Jens Püttschneider
T. Faulwasser
30
0
0
29 May 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
28
10
0
17 Jan 2024
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
Eduardo Sebastián
T. Duong
Nikolay A. Atanasov
Eduardo Montijano
C. Sagüés
25
2
0
30 Dec 2023
Unconstrained Parametrization of Dissipative and Contracting Neural Ordinary Differential Equations
D. Martinelli
C. Galimberti
I. Manchester
Luca Furieri
Giancarlo Ferrari-Trecate
17
11
0
06 Apr 2023
Universal Approximation Property of Hamiltonian Deep Neural Networks
M. Zakwan
M. d’Angelo
Giancarlo Ferrari-Trecate
28
5
0
21 Mar 2023
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
40
10
0
05 Oct 2022
LEMURS: Learning Distributed Multi-Robot Interactions
Eduardo Sebastián
T. Duong
Nikolay A. Atanasov
Eduardo Montijano
C. Sagüés
70
8
0
20 Sep 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach
Luca Furieri
C. Galimberti
M. Zakwan
Giancarlo Ferrari-Trecate
23
20
0
16 Dec 2021
1