ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14044
19
14

Fair Representations by Compression

28 May 2021
Xavier Gitiaux
Huzefa Rangwala
    FaML
ArXivPDFHTML
Abstract

Organizations that collect and sell data face increasing scrutiny for the discriminatory use of data. We propose a novel unsupervised approach to transform data into a compressed binary representation independent of sensitive attributes. We show that in an information bottleneck framework, a parsimonious representation should filter out information related to sensitive attributes if they are provided directly to the decoder. Empirical results show that the proposed method, \textbf{FBC}, achieves state-of-the-art accuracy-fairness trade-off. Explicit control of the entropy of the representation bit stream allows the user to move smoothly and simultaneously along both rate-distortion and rate-fairness curves. \end{abstract}

View on arXiv
Comments on this paper