ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00958
  4. Cited By
A Generalizable Approach to Learning Optimizers

A Generalizable Approach to Learning Optimizers

2 June 2021
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
    AI4CE
ArXivPDFHTML

Papers citing "A Generalizable Approach to Learning Optimizers"

16 / 16 papers shown
Title
Reinforcement Teaching
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun-Jie Luo
74
1
0
28 Jan 2025
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
123
0
0
22 Jan 2025
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
40
3
0
09 Jul 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
B. Kveton
V. Cevher
19
2
0
17 Jan 2024
Sentiment analysis in Tourism: Fine-tuning BERT or sentence embeddings
  concatenation?
Sentiment analysis in Tourism: Fine-tuning BERT or sentence embeddings concatenation?
Ibrahim Bouabdallaoui
Fatima Guerouate
Samya Bouhaddour
C. Saadi
Mohammed Sbihi
14
0
0
12 Dec 2023
Ever Evolving Evaluator (EV3): Towards Flexible and Reliable
  Meta-Optimization for Knowledge Distillation
Ever Evolving Evaluator (EV3): Towards Flexible and Reliable Meta-Optimization for Knowledge Distillation
Li Ding
M. Zoghi
Guy Tennenholtz
Maryam Karimzadehgan
16
0
0
29 Oct 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
21
60
0
17 Nov 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
73
64
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
44
22
0
22 Sep 2022
Meta-Gradients in Non-Stationary Environments
Meta-Gradients in Non-Stationary Environments
Jelena Luketina
Sebastian Flennerhag
Yannick Schroecker
David Abel
Tom Zahavy
Satinder Singh
21
10
0
13 Sep 2022
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
27
36
0
27 May 2022
Practical tradeoffs between memory, compute, and performance in learned
  optimizers
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
31
32
0
22 Mar 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
37
18
0
13 Mar 2022
ModelPred: A Framework for Predicting Trained Model from Training Data
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
20
2
0
24 Nov 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
30
224
0
23 Mar 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
1