ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02382
  4. Cited By
Annotation Curricula to Implicitly Train Non-Expert Annotators

Annotation Curricula to Implicitly Train Non-Expert Annotators

4 June 2021
Ji-Ung Lee
Jan-Christoph Klie
Iryna Gurevych
ArXivPDFHTML

Papers citing "Annotation Curricula to Implicitly Train Non-Expert Annotators"

4 / 4 papers shown
Title
Lessons Learned from a Citizen Science Project for Natural Language
  Processing
Lessons Learned from a Citizen Science Project for Natural Language Processing
Jan-Christoph Klie
Ji-Ung Lee
Kevin Stowe
Gozde Gul cSahin
N. Moosavi
Luke Bates
Dominic Petrak
Richard Eckart de Castilho
Iryna Gurevych
11
4
0
25 Apr 2023
Efficient Methods for Natural Language Processing: A Survey
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
Cold-start Active Learning through Self-supervised Language Modeling
Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan
Hsuan-Tien Lin
Jordan L. Boyd-Graber
113
180
0
19 Oct 2020
Are We Modeling the Task or the Annotator? An Investigation of Annotator
  Bias in Natural Language Understanding Datasets
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva
Yoav Goldberg
Jonathan Berant
239
319
0
21 Aug 2019
1