Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02969
Cited By
FedNL: Making Newton-Type Methods Applicable to Federated Learning
5 June 2021
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedNL: Making Newton-Type Methods Applicable to Federated Learning"
14 / 14 papers shown
Title
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
49
0
0
11 Mar 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
35
0
0
11 Nov 2024
Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
Wei Huo
Changxin Liu
Kemi Ding
Karl H. Johansson
Ling Shi
FedML
37
0
0
08 Aug 2024
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
23
19
0
17 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
Efficient Federated Learning via Local Adaptive Amended Optimizer with Linear Speedup
Yan Sun
Li Shen
Hao Sun
Liang Ding
Dacheng Tao
FedML
24
17
0
30 Jul 2023
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors Quantization
Nicolò Dal Fabbro
M. Rossi
Luca Schenato
S. Dey
21
0
0
18 May 2023
Network-GIANT: Fully distributed Newton-type optimization via harmonic Hessian consensus
A. Maritan
Ganesh Sharma
Luca Schenato
S. Dey
25
2
0
13 May 2023
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
34
6
0
03 Oct 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
32
6
0
20 Jun 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
29
14
0
11 Feb 2022
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
24
23
0
02 Nov 2021
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
163
77
0
23 Oct 2020
1