ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03415
  4. Cited By
Leveraging Tripartite Interaction Information from Live Stream
  E-Commerce for Improving Product Recommendation

Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation

7 June 2021
Sanshi Lei Yu
Zhuoxuan Jiang
Dongdong Chen
Shanshan Feng
Dongsheng Li
Qi Liu
Jinfeng Yi
ArXivPDFHTML

Papers citing "Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation"

7 / 7 papers shown
Title
On-line Policy Improvement using Monte-Carlo Search
On-line Policy Improvement using Monte-Carlo Search
Gerald Tesauro
Gregory R. Galperin
81
270
0
09 Jan 2025
Exploring Large Language Models for Product Attribute Value
  Identification
Exploring Large Language Models for Product Attribute Value Identification
Kassem Sabeh
Mouna Kacimi
Johann Gamper
Robert Litschko
Barbara Plank
40
2
0
19 Sep 2024
MMBee: Live Streaming Gift-Sending Recommendations via Multi-Modal
  Fusion and Behaviour Expansion
MMBee: Live Streaming Gift-Sending Recommendations via Multi-Modal Fusion and Behaviour Expansion
Jiaxin Deng
Shiyao Wang
Yuchen Wang
Jiansong Qi
Liqin Zhao
Guorui Zhou
Gaofeng Meng
28
3
0
15 Jun 2024
Ensure Timeliness and Accuracy: A Novel Sliding Window Data Stream
  Paradigm for Live Streaming Recommendation
Ensure Timeliness and Accuracy: A Novel Sliding Window Data Stream Paradigm for Live Streaming Recommendation
Fengqi Liang
Baigong Zheng
Liqin Zhao
Guorui Zhou
Qian Wang
Yanan Niu
AI4TS
37
4
0
22 Feb 2024
ContentCTR: Frame-level Live Streaming Click-Through Rate Prediction
  with Multimodal Transformer
ContentCTR: Frame-level Live Streaming Click-Through Rate Prediction with Multimodal Transformer
Jiaxin Deng
Dong Shen
Shiyao Wang
Xiangyu Wu
Fan Yang
Guorui Zhou
Gaofeng Meng
33
1
0
26 Jun 2023
Multi-Sample based Contrastive Loss for Top-k Recommendation
Multi-Sample based Contrastive Loss for Top-k Recommendation
H. Tang
Guoshuai Zhao
Yuxia Wu
Xueming Qian
23
32
0
01 Sep 2021
Hierarchical Attentive Knowledge Graph Embedding for Personalized
  Recommendation
Hierarchical Attentive Knowledge Graph Embedding for Personalized Recommendation
Xiao Sha
Zhu Sun
Jie M. Zhang
30
63
0
18 Oct 2019
1