ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03477
  4. Cited By
BayesIMP: Uncertainty Quantification for Causal Data Fusion

BayesIMP: Uncertainty Quantification for Causal Data Fusion

7 June 2021
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
    CML
ArXivPDFHTML

Papers citing "BayesIMP: Uncertainty Quantification for Causal Data Fusion"

5 / 5 papers shown
Title
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
34
1
0
18 Oct 2024
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
  Models
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
49
11
0
24 May 2023
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CML
OffRL
23
0
0
02 Nov 2022
Causal Inference from Small High-dimensional Datasets
Causal Inference from Small High-dimensional Datasets
Raquel Y. S. Aoki
Martin Ester
CML
21
4
0
19 May 2022
Causal Inference Through the Structural Causal Marginal Problem
Causal Inference Through the Structural Causal Marginal Problem
Luigi Gresele
Julius von Kügelgen
Jonas M. Kubler
Elke Kirschbaum
Bernhard Schölkopf
Dominik Janzing
27
19
0
02 Feb 2022
1