ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05102
  4. Cited By
Learning normal form autoencoders for data-driven discovery of
  universal,parameter-dependent governing equations

Learning normal form autoencoders for data-driven discovery of universal,parameter-dependent governing equations

9 June 2021
M. Kalia
Steven L. Brunton
H. Meijer
C. Brune
J. Nathan Kutz
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Learning normal form autoencoders for data-driven discovery of universal,parameter-dependent governing equations"

9 / 9 papers shown
Title
RandONet: Shallow-Networks with Random Projections for learning linear
  and nonlinear operators
RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators
Gianluca Fabiani
Ioannis G. Kevrekidis
Constantinos Siettos
A. Yannacopoulos
112
13
0
08 Jun 2024
Discovering Efficient Periodic Behaviours in Mechanical Systems via
  Neural Approximators
Discovering Efficient Periodic Behaviours in Mechanical Systems via Neural Approximators
Yannik P. Wotte
Sven Dummer
N. Botteghi
C. Brune
Stefano Stramigioli
Federico Califano
78
6
0
29 Dec 2022
Reduced order modeling of parametrized systems through autoencoders and
  SINDy approach: continuation of periodic solutions
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
Paolo Conti
G. Gobat
S. Fresca
Andrea Manzoni
A. Frangi
AI4CE
90
51
0
13 Nov 2022
Data-driven reduced order models using invariant foliations, manifolds
  and autoencoders
Data-driven reduced order models using invariant foliations, manifolds and autoencoders
R. Szalai
AI4CE
69
10
0
24 Jun 2022
Dimensionally Consistent Learning with Buckingham Pi
Dimensionally Consistent Learning with Buckingham Pi
Joseph Bakarji
Jared L. Callaham
Steven L. Brunton
N. Kutz
64
41
0
09 Feb 2022
Machine Learning in Heterogeneous Porous Materials
Machine Learning in Heterogeneous Porous Materials
Martha DÉli
H. Deng
Cedric G. Fraces
K. Garikipati
L. Graham‐Brady
...
H. Tchelepi
B. Važić
Hari S. Viswanathan
H. Yoon
P. Zarzycki
AI4CE
80
9
0
04 Feb 2022
Discovering Governing Equations from Partial Measurements with Deep
  Delay Autoencoders
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
111
86
0
13 Jan 2022
A toolkit for data-driven discovery of governing equations in high-noise
  regimes
A toolkit for data-driven discovery of governing equations in high-noise regimes
Charles B. Delahunt
J. Nathan Kutz
107
19
0
08 Nov 2021
An artificial neural network approach to bifurcating phenomena in
  computational fluid dynamics
An artificial neural network approach to bifurcating phenomena in computational fluid dynamics
F. Pichi
F. Ballarin
G. Rozza
J. Hesthaven
AI4CE
85
73
0
22 Sep 2021
1