ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05110
  4. Cited By
Self-Paced Context Evaluation for Contextual Reinforcement Learning

Self-Paced Context Evaluation for Contextual Reinforcement Learning

9 June 2021
Theresa Eimer
André Biedenkapp
Frank Hutter
Marius Lindauer
    OffRL
    LRM
ArXivPDFHTML

Papers citing "Self-Paced Context Evaluation for Contextual Reinforcement Learning"

8 / 8 papers shown
Title
Reward-Machine-Guided, Self-Paced Reinforcement Learning
Reward-Machine-Guided, Self-Paced Reinforcement Learning
Cevahir Köprülü
Ufuk Topcu
10
3
0
25 May 2023
Proximal Curriculum for Reinforcement Learning Agents
Proximal Curriculum for Reinforcement Learning Agents
Georgios Tzannetos
Bárbara Gomes Ribeiro
Parameswaran Kamalaruban
Adish Singla
25
5
0
25 Apr 2023
Train Hard, Fight Easy: Robust Meta Reinforcement Learning
Train Hard, Fight Easy: Robust Meta Reinforcement Learning
Ido Greenberg
Shie Mannor
Gal Chechik
E. Meirom
OffRL
OOD
19
6
0
26 Jan 2023
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
29
36
0
27 May 2022
Evolving Curricula with Regret-Based Environment Design
Evolving Curricula with Regret-Based Environment Design
Jack Parker-Holder
Minqi Jiang
Michael Dennis
Mikayel Samvelyan
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
31
116
0
02 Mar 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
30
100
0
11 Jan 2022
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
C. Benjamins
Theresa Eimer
Frederik Schubert
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
OffRL
41
23
0
05 Oct 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
320
11,681
0
09 Mar 2017
1