ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05121
  4. Cited By
Grounding inductive biases in natural images:invariance stems from
  variations in data

Grounding inductive biases in natural images:invariance stems from variations in data

9 June 2021
Diane Bouchacourt
Mark Ibrahim
Ari S. Morcos
    OOD
ArXivPDFHTML

Papers citing "Grounding inductive biases in natural images:invariance stems from variations in data"

9 / 9 papers shown
Title
What Affects Learned Equivariance in Deep Image Recognition Models?
What Affects Learned Equivariance in Deep Image Recognition Models?
Robert-Jan Bruintjes
Tomasz Motyka
J. C. V. Gemert
18
7
0
05 Apr 2023
The Robustness Limits of SoTA Vision Models to Natural Variation
The Robustness Limits of SoTA Vision Models to Natural Variation
Mark Ibrahim
Q. Garrido
Ari S. Morcos
Diane Bouchacourt
VLM
35
16
0
24 Oct 2022
Robust Self-Supervised Learning with Lie Groups
Robust Self-Supervised Learning with Lie Groups
Mark Ibrahim
Diane Bouchacourt
Ari S. Morcos
SSL
OOD
33
6
0
24 Oct 2022
The Lie Derivative for Measuring Learned Equivariance
The Lie Derivative for Measuring Learned Equivariance
Nate Gruver
Marc Finzi
Micah Goldblum
A. Wilson
16
34
0
06 Oct 2022
Regularising for invariance to data augmentation improves supervised
  learning
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
30
14
0
07 Mar 2022
Vision Models Are More Robust And Fair When Pretrained On Uncurated
  Images Without Supervision
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
Priya Goyal
Quentin Duval
Isaac Seessel
Mathilde Caron
Ishan Misra
Levent Sagun
Armand Joulin
Piotr Bojanowski
VLM
SSL
26
110
0
16 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
17
8
0
04 Feb 2022
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
175
313
0
07 Feb 2020
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
151
308
0
05 Nov 2018
1