Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.05234
Cited By
Do Transformers Really Perform Bad for Graph Representation?
9 June 2021
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Do Transformers Really Perform Bad for Graph Representation?"
10 / 10 papers shown
Title
Wide & Deep Learning for Node Classification
Yancheng Chen
Wenguo Yang
Zhipeng Jiang
GNN
22
0
0
04 May 2025
Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling
Hyun Lee
Chris Yi
Maminur Islam
B.D.S. Aritra
20
0
0
02 May 2025
Graph Triple Attention Network: A Decoupled Perspective
Xiaotang Wang
Yun Zhu
Haizhou Shi
Yongchao Liu
Chuntao Hong
52
1
0
03 Jan 2025
ChemDFM-X: Towards Large Multimodal Model for Chemistry
Zihan Zhao
B. Chen
Jingpiao Li
Lu Chen
Liyang Wen
...
Ziping Wan
Yansi Li
Zhongyang Dai
Xin Chen
Kai Yu
AI4CE
33
3
0
03 Jan 2025
MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Luhui Cai
Weiming Zeng
Hongyu Chen
Hua Zhang
Yueyang Li
Hongjie Yan
Lingbin Bian
Lingbin Bian
Wai Ting Siok
Nizhuan Wang
MedIm
25
3
0
20 Jun 2024
Supercharging Graph Transformers with Advective Diffusion
Qitian Wu
Chenxiao Yang
Kaipeng Zeng
Fan Nie
AI4CE
28
6
0
10 Oct 2023
SPAGAN: Shortest Path Graph Attention Network
Yiding Yang
Xinchao Wang
Mingli Song
Junsong Yuan
Dacheng Tao
GNN
130
94
0
10 Jan 2021
Heterogeneous Graph Transformer
Ziniu Hu
Yuxiao Dong
Kuansan Wang
Yizhou Sun
167
1,157
0
03 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
173
907
0
02 Mar 2020
FreeLB: Enhanced Adversarial Training for Natural Language Understanding
Chen Zhu
Yu Cheng
Zhe Gan
S. Sun
Tom Goldstein
Jingjing Liu
AAML
200
430
0
25 Sep 2019
1