ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06536
11
0

Unsupervised Neural Hidden Markov Models with a Continuous latent state space

10 June 2021
Firas Jarboui
Vianney Perchet
    BDL
ArXiv (abs)PDFHTML
Abstract

We introduce a new procedure to neuralize unsupervised Hidden Markov Models in the continuous case. This provides higher flexibility to solve problems with underlying latent variables. This approach is evaluated on both synthetic and real data. On top of generating likely model parameters with comparable performances to off-the-shelf neural architecture (LSTMs, GRUs,..), the obtained results are easily interpretable.

View on arXiv
Comments on this paper