ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06828
  4. Cited By
A Game-Theoretic Approach to Multi-Agent Trust Region Optimization

A Game-Theoretic Approach to Multi-Agent Trust Region Optimization

12 June 2021
Ying Wen
Hui Chen
Yaodong Yang
Zheng Tian
Minne Li
Xu Chen
Jun Wang
ArXivPDFHTML

Papers citing "A Game-Theoretic Approach to Multi-Agent Trust Region Optimization"

4 / 4 papers shown
Title
Proximal Learning With Opponent-Learning Awareness
Proximal Learning With Opponent-Learning Awareness
S. Zhao
Chris Xiaoxuan Lu
Roger C. Grosse
Jakob N. Foerster
23
21
0
18 Oct 2022
Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning
Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning
J. Kuba
Ruiqing Chen
Munning Wen
Ying Wen
Fanglei Sun
Jun Wang
Yaodong Yang
16
229
0
23 Sep 2021
Independent Policy Gradient Methods for Competitive Reinforcement
  Learning
Independent Policy Gradient Methods for Competitive Reinforcement Learning
C. Daskalakis
Dylan J. Foster
Noah Golowich
62
158
0
11 Jan 2021
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
  Autonomous Driving
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving
Ming Zhou
Jun-Jie Luo
Julian Villela
Yaodong Yang
David Rusu
...
H. Ammar
Hongbo Zhang
Wulong Liu
Jianye Hao
Jun Wang
136
193
0
19 Oct 2020
1