ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07716
  4. Cited By
Overcoming Domain Mismatch in Low Resource Sequence-to-Sequence ASR
  Models using Hybrid Generated Pseudotranscripts

Overcoming Domain Mismatch in Low Resource Sequence-to-Sequence ASR Models using Hybrid Generated Pseudotranscripts

14 June 2021
Chak-Fai Li
Francis Keith
William Hartmann
M. Snover
O. Kimball
ArXivPDFHTML

Papers citing "Overcoming Domain Mismatch in Low Resource Sequence-to-Sequence ASR Models using Hybrid Generated Pseudotranscripts"

2 / 2 papers shown
Title
Training Autoregressive Speech Recognition Models with Limited in-domain
  Supervision
Training Autoregressive Speech Recognition Models with Limited in-domain Supervision
Chak-Fai Li
Francis Keith
William Hartmann
M. Snover
14
0
0
27 Oct 2022
Unsupervised domain adaptation for speech recognition with unsupervised
  error correction
Unsupervised domain adaptation for speech recognition with unsupervised error correction
Long Mai
Julie Carson-Berndsen
20
8
0
24 Sep 2022
1