Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07767
Cited By
How does Heterophily Impact the Robustness of Graph Neural Networks? Theoretical Connections and Practical Implications
14 June 2021
Jiong Zhu
Junchen Jin
Donald Loveland
Michael T. Schaub
Danai Koutra
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How does Heterophily Impact the Robustness of Graph Neural Networks? Theoretical Connections and Practical Implications"
7 / 7 papers shown
Title
MADE: Graph Backdoor Defense with Masked Unlearning
Xiao Lin amd Mingjie Li
Mingjie Li
Yisen Wang
AAML
78
1
0
03 Jan 2025
On Graph Neural Network Fairness in the Presence of Heterophilous Neighborhoods
Donald Loveland
Jiong Zhu
Mark Heimann
Benjamin Fish
Michael T. Schaub
Danai Koutra
22
6
0
10 Jul 2022
AdaGNN: Graph Neural Networks with Adaptive Frequency Response Filter
Yushun Dong
Kaize Ding
B. Jalaeian
Shuiwang Ji
Jundong Li
53
59
0
26 Apr 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
84
445
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
217
1,726
0
09 Jun 2018
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1