ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07856
156
2
v1v2v3 (latest)

A Hybrid mmWave and Camera System for Long-Range Depth Imaging

15 June 2021
Akarsh Prabhakara
Diana Zhang
Chao Li
Sirajum Munir
Aswin C. Sankaranarayanan
Anthony G. Rowe
Swarun Kumar
    MDE
ArXiv (abs)PDFHTML
Abstract

mmWave radars offer excellent depth resolution even at very long ranges owing to their high bandwidth. But their angular resolution is at least an order-of-magnitude worse than camera and lidar systems. Hence, mmWave radar is not a capable 3-D imaging solution in isolation. We propose Metamoran, a system that combines the complimentary strengths of radar and camera to obtain accurate, high resolution depth images over long ranges even in high clutter environments, all from a single fixed vantage point. Metamoran enables rich long-range depth imaging with applications in security and surveillance, roadside safety infrastructure and wide-area mapping. Our approach leverages the high angular resolution from cameras using computer vision techniques, including image segmentation and monocular depth estimation, to obtain object shape. Our core contribution is a method to convert this object shape into an RF I/Q equivalent, which we use in a novel radar processing pipeline to help declutter the scene and capture extremely weak reflections from objects at long distances. We perform a detailed evaluation of Metamoran's depth imaging capabilities in 400 diverse scenes. Our evaluation shows that Metamoran estimates the depth of static objects up to 90 m and moving objects up to 305 m and with a median error of 28 cm, an improvement of 13×\times× compared to a naive radar+camera baseline and 23×\times× compared to monocular depth estimation.

View on arXiv
Comments on this paper