Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08929
Cited By
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
16 June 2021
Pierre Glaser
Michael Arbel
A. Gretton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support"
7 / 7 papers shown
Title
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
61
0
0
03 Mar 2025
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
40
7
0
10 May 2024
Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Viktor Stein
Sebastian Neumayer
Gabriele Steidl
Nicolaj Rux
50
9
0
07 Feb 2024
Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are
Siddarth Asokan
C. Seelamantula
24
4
0
01 Jun 2023
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
31
21
0
21 Oct 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
1