Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.09004
Cited By
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning
10 June 2021
Felix Dietrich
Alexei Makeev
George A. Kevrekidis
N. Evangelou
Tom S. Bertalan
Sebastian Reich
Ioannis G. Kevrekidis
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning"
4 / 4 papers shown
Title
MD-NOMAD: Mixture density nonlinear manifold decoder for emulating stochastic differential equations and uncertainty propagation
Akshay Thakur
Souvik Chakraborty
34
1
0
24 Apr 2024
Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points
Gianluca Fabiani
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Cristina P. Martin-Linares
Constantinos Siettos
Ioannis G. Kevrekidis
30
2
0
25 Sep 2023
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
22
1
0
17 Nov 2022
An end-to-end deep learning approach for extracting stochastic dynamical systems with
α
α
α
-stable Lévy noise
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
47
16
0
31 Jan 2022
1