ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09121
  4. Cited By
Scaling-up Diverse Orthogonal Convolutional Networks with a Paraunitary
  Framework

Scaling-up Diverse Orthogonal Convolutional Networks with a Paraunitary Framework

16 June 2021
Jiahao Su
Wonmin Byeon
Furong Huang
ArXiv (abs)PDFHTML

Papers citing "Scaling-up Diverse Orthogonal Convolutional Networks with a Paraunitary Framework"

6 / 6 papers shown
Title
Parseval Convolution Operators and Neural Networks
Parseval Convolution Operators and Neural Networks
Michael Unser
Stanislas Ducotterd
153
4
0
19 Aug 2024
Group Orthogonalization Regularization For Vision Models Adaptation and
  Robustness
Group Orthogonalization Regularization For Vision Models Adaptation and RobustnessBritish Machine Vision Conference (BMVC), 2023
Yoav Kurtz
Noga Bar
Raja Giryes
225
1
0
16 Jun 2023
Robust One-Class Classification with Signed Distance Function using
  1-Lipschitz Neural Networks
Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural NetworksInternational Conference on Machine Learning (ICML), 2023
Louis Bethune
Paul Novello
Thibaut Boissin
Guillaume Coiffier
M. Serrurier
Quentin Vincenot
Andres Troya-Galvis
223
11
0
26 Jan 2023
Improved techniques for deterministic l2 robustness
Improved techniques for deterministic l2 robustnessNeural Information Processing Systems (NeurIPS), 2022
Sahil Singla
Soheil Feizi
AAML
176
11
0
15 Nov 2022
Certified Defense via Latent Space Randomized Smoothing with Orthogonal
  Encoders
Certified Defense via Latent Space Randomized Smoothing with Orthogonal Encoders
Huimin Zeng
Jiahao Su
Furong Huang
AAML
89
4
0
01 Aug 2021
Pay attention to your loss: understanding misconceptions about
  1-Lipschitz neural networks
Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networksNeural Information Processing Systems (NeurIPS), 2021
Louis Bethune
Thibaut Boissin
M. Serrurier
Franck Mamalet
Corentin Friedrich
Alberto González Sanz
352
29
0
11 Apr 2021
1