ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09302
  4. Cited By
How can we learn (more) from challenges? A statistical approach to
  driving future algorithm development

How can we learn (more) from challenges? A statistical approach to driving future algorithm development

17 June 2021
T. Ross
Pierangela Bruno
Annika Reinke
Manuel Wiesenfarth
Lisa Koeppel
Peter M. Full
Bunyamin Pekdemir
Patrick Godau
D. Trofimova
Fabian Isensee
S. Moccia
Francesco Calimeri
Beat P. Müller-Stich
A. Kopp-Schneider
Lena Maier-Hein
    AAML
ArXivPDFHTML

Papers citing "How can we learn (more) from challenges? A statistical approach to driving future algorithm development"

2 / 2 papers shown
Title
Semantic segmentation of multispectral photoacoustic images using deep
  learning
Semantic segmentation of multispectral photoacoustic images using deep learning
Melanie Schellenberg
Kris K. Dreher
Niklas Holzwarth
Fabian Isensee
Annika Reinke
Nicholas Schreck
A. Seitel
M. Tizabi
Lena Maier-Hein
J. Gröhl
17
32
0
20 May 2021
Stereo Correspondence and Reconstruction of Endoscopic Data Challenge
Stereo Correspondence and Reconstruction of Endoscopic Data Challenge
M. Allan
J. Mcleod
Congcong Wang
Jean-Claude Rosenthal
Zheng Hu
...
Dimitris Psychogyios
M. Azizian
Danail Stoyanov
Lena Maier-Hein
Stefanie Speidel
3DV
48
135
0
04 Jan 2021
1