Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.10151
Cited By
v1
v2 (latest)
The Dimpled Manifold Model of Adversarial Examples in Machine Learning
18 June 2021
A. Shamir
Odelia Melamed
Oriel BenShmuel
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Dimpled Manifold Model of Adversarial Examples in Machine Learning"
33 / 33 papers shown
Title
Generalizability vs. Counterfactual Explainability Trade-Off
Fabiano Veglianti
Flavio Giorgi
Fabrizio Silvestri
Gabriele Tolomei
40
0
0
29 May 2025
An Analytical Characterization of Sloppiness in Neural Networks: Insights from Linear Models
Jialin Mao
Itay Griniasty
Yan Sun
Mark K. Transtrum
James P. Sethna
Pratik Chaudhari
105
0
0
13 May 2025
Exploring Gradient-Guided Masked Language Model to Detect Textual Adversarial Attacks
Xiaomei Zhang
Zhaoxi Zhang
Yanjun Zhang
Xufei Zheng
L. Zhang
Shengshan Hu
Shirui Pan
AAML
58
0
0
08 Apr 2025
Adversarial Vulnerability as a Consequence of On-Manifold Inseparibility
Rajdeep Haldar
Yue Xing
Qifan Song
Guang Lin
50
0
0
09 Oct 2024
ALIF: Low-Cost Adversarial Audio Attacks on Black-Box Speech Platforms using Linguistic Features
Peng Cheng
Yuwei Wang
Peng Huang
Zhongjie Ba
Xiaodong Lin
Feng Lin
Liwang Lu
Kui Ren
AAML
74
9
0
03 Aug 2024
MALT Powers Up Adversarial Attacks
Odelia Melamed
Gilad Yehudai
Adi Shamir
AAML
49
0
0
02 Jul 2024
Persistent Classification: A New Approach to Stability of Data and Adversarial Examples
Brian Bell
Michael Geyer
David Glickenstein
Keaton Hamm
C. Scheidegger
Amanda S. Fernandez
Juston Moore
AAML
87
1
0
11 Apr 2024
Generative Kaleidoscopic Networks
H. Shrivastava
62
0
0
19 Feb 2024
Adversarial Robustness Through Artifact Design
Tsufit Shua
Mahmood Sharif
AAML
72
0
0
07 Feb 2024
Explaining high-dimensional text classifiers
Odelia Melamed
Rich Caruana
43
0
0
22 Nov 2023
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
118
9
0
17 Oct 2023
On the Computational Entanglement of Distant Features in Adversarial Machine Learning
Yen-Lung Lai
Xingbo Dong
Zhe Jin
AAML
59
0
0
27 Sep 2023
Projected Randomized Smoothing for Certified Adversarial Robustness
Samuel Pfrommer
Brendon G. Anderson
Somayeh Sojoudi
AAML
71
16
0
25 Sep 2023
How adversarial attacks can disrupt seemingly stable accurate classifiers
Oliver J. Sutton
Qinghua Zhou
I. Tyukin
Alexander N. Gorban
Alexander Bastounis
D. Higham
AAML
69
1
0
07 Sep 2023
Masked Language Model Based Textual Adversarial Example Detection
Xiaomei Zhang
Zhaoxi Zhang
Qi Zhong
Xufei Zheng
Yanjun Zhang
Shengshan Hu
L. Zhang
AAML
101
2
0
18 Apr 2023
The Double-Edged Sword of Implicit Bias: Generalization vs. Robustness in ReLU Networks
Spencer Frei
Gal Vardi
Peter L. Bartlett
Nathan Srebro
83
17
0
02 Mar 2023
Adversarial Examples Exist in Two-Layer ReLU Networks for Low Dimensional Linear Subspaces
Odelia Melamed
Gilad Yehudai
Gal Vardi
GAN
60
2
0
01 Mar 2023
Out-of-Distribution Detection with Reconstruction Error and Typicality-based Penalty
Genki Osada
Tsubasa Takahashi
Budrul Ahsan
Takashi Nishide
OODD
92
14
0
24 Dec 2022
Textual Manifold-based Defense Against Natural Language Adversarial Examples
D. M. Nguyen
Anh Tuan Luu
AAML
84
17
0
05 Nov 2022
Do Perceptually Aligned Gradients Imply Adversarial Robustness?
Roy Ganz
Bahjat Kawar
Michael Elad
AAML
45
10
0
22 Jul 2022
Threat Model-Agnostic Adversarial Defense using Diffusion Models
Tsachi Blau
Roy Ganz
Bahjat Kawar
Alex M. Bronstein
Michael Elad
AAML
DiffM
95
27
0
17 Jul 2022
On the Principles of Parsimony and Self-Consistency for the Emergence of Intelligence
Yi Ma
Doris Y. Tsao
H. Shum
142
78
0
11 Jul 2022
A law of adversarial risk, interpolation, and label noise
Daniel Paleka
Amartya Sanyal
NoLa
AAML
94
10
0
08 Jul 2022
Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks
Huishuai Zhang
Da Yu
Yiping Lu
Di He
AAML
98
1
0
09 Jun 2022
Adversarial Reprogramming Revisited
Matthias Englert
R. Lazic
AAML
98
11
0
07 Jun 2022
An Analytic Framework for Robust Training of Artificial Neural Networks
Ramin Barati
Reza Safabakhsh
Mohammad Rahmati
AAML
56
0
0
26 May 2022
Topology and geometry of data manifold in deep learning
German Magai
A. Ayzenberg
AAML
67
11
0
19 Apr 2022
Planting Undetectable Backdoors in Machine Learning Models
S. Goldwasser
Michael P. Kim
Vinod Vaikuntanathan
Or Zamir
AAML
56
73
0
14 Apr 2022
AdvEst: Adversarial Perturbation Estimation to Classify and Detect Adversarial Attacks against Speaker Identification
Sonal Joshi
Saurabh Kataria
Jesus Villalba
Najim Dehak
AAML
86
7
0
08 Apr 2022
Gradient Methods Provably Converge to Non-Robust Networks
Gal Vardi
Gilad Yehudai
Ohad Shamir
95
28
0
09 Feb 2022
Probabilistically Robust Learning: Balancing Average- and Worst-case Performance
Alexander Robey
Luiz F. O. Chamon
George J. Pappas
Hamed Hassani
AAML
OOD
109
43
0
02 Feb 2022
The Security of Deep Learning Defences for Medical Imaging
Mosh Levy
Guy Amit
Yuval Elovici
Yisroel Mirsky
AAML
MedIm
141
9
0
21 Jan 2022
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
120
59
0
25 Feb 2021
1