ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10934
  4. Cited By
GRAND: Graph Neural Diffusion

GRAND: Graph Neural Diffusion

21 June 2021
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
    GNN
ArXivPDFHTML

Papers citing "GRAND: Graph Neural Diffusion"

50 / 165 papers shown
Title
A Survey on Oversmoothing in Graph Neural Networks
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
16
184
0
20 Mar 2023
Graph Neural Networks in Vision-Language Image Understanding: A Survey
Graph Neural Networks in Vision-Language Image Understanding: A Survey
Henry Senior
Greg Slabaugh
Shanxin Yuan
Luca Rossi
GNN
21
13
0
07 Mar 2023
Node-Specific Space Selection via Localized Geometric Hyperbolicity in
  Graph Neural Networks
Node-Specific Space Selection via Localized Geometric Hyperbolicity in Graph Neural Networks
See Hian Lee
Feng Ji
Wee Peng Tay
16
1
0
03 Mar 2023
Node Embedding from Hamiltonian Information Propagation in Graph Neural
  Networks
Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks
Qiyu Kang
Kai Zhao
Yang Song
Sijie Wang
Rui She
Wee Peng Tay
28
0
0
02 Mar 2023
Framelet Message Passing
Framelet Message Passing
Xinliang Liu
Bingxin Zhou
Chutian Zhang
Yu Guang Wang
21
5
0
28 Feb 2023
Diffusion Probabilistic Models for Structured Node Classification
Diffusion Probabilistic Models for Structured Node Classification
Hyosoon Jang
Seonghyun Park
Sangwoo Mo
Sungsoo Ahn
DiffM
20
3
0
21 Feb 2023
Fast Temporal Wavelet Graph Neural Networks
Fast Temporal Wavelet Graph Neural Networks
D. Nguyen
Manh Tuan Nguyen
Truong Son-Hy
Risi Kondor
AI4TS
11
7
0
17 Feb 2023
Multiscale Graph Neural Network Autoencoders for Interpretable
  Scientific Machine Learning
Multiscale Graph Neural Network Autoencoders for Interpretable Scientific Machine Learning
Shivam Barwey
Varun Shankar
V. Viswanathan
R. Maulik
AI4CE
25
20
0
13 Feb 2023
Graph Harmony: Denoising and Nuclear-Norm Wasserstein Adaptation for
  Enhanced Domain Transfer in Graph-Structured Data
Graph Harmony: Denoising and Nuclear-Norm Wasserstein Adaptation for Enhanced Domain Transfer in Graph-Structured Data
Mengxi Wu
Mohammad Rostami
AI4CE
19
3
0
29 Jan 2023
DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
  Diffusion
DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion
Qitian Wu
Chenxiao Yang
Wen-Long Zhao
Yixuan He
David Wipf
Junchi Yan
DiffM
16
82
0
23 Jan 2023
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
M. Behmanesh
Maximilian Krahn
M. Ovsjanikov
DiffM
GNN
19
9
0
05 Dec 2022
Every Node Counts: Improving the Training of Graph Neural Networks on
  Node Classification
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
Moshe Eliasof
E. Haber
Eran Treister
GNN
22
0
0
29 Nov 2022
GREAD: Graph Neural Reaction-Diffusion Networks
GREAD: Graph Neural Reaction-Diffusion Networks
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
DiffM
GNN
19
26
0
25 Nov 2022
RobustLoc: Robust Camera Pose Regression in Challenging Driving
  Environments
RobustLoc: Robust Camera Pose Regression in Challenging Driving Environments
Sijie Wang
Qiyu Kang
Rui She
Wee Peng Tay
Andreas Hartmannsgruber
Diego Navarro Navarro
22
20
0
21 Nov 2022
Improving Graph Neural Networks with Learnable Propagation Operators
Improving Graph Neural Networks with Learnable Propagation Operators
Moshe Eliasof
Lars Ruthotto
Eran Treister
25
20
0
31 Oct 2022
Changes from Classical Statistics to Modern Statistics and Data Science
Changes from Classical Statistics to Modern Statistics and Data Science
Kai Zhang
Shan-Yu Liu
M. Xiong
21
0
0
30 Oct 2022
Clenshaw Graph Neural Networks
Clenshaw Graph Neural Networks
Y. Guo
Zhewei Wei
GNN
53
10
0
29 Oct 2022
Geometric Knowledge Distillation: Topology Compression for Graph Neural
  Networks
Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks
Chenxiao Yang
Qitian Wu
Junchi Yan
16
26
0
24 Oct 2022
Correlating sparse sensing for large-scale traffic speed estimation: A
  Laplacian-enhanced low-rank tensor kriging approach
Correlating sparse sensing for large-scale traffic speed estimation: A Laplacian-enhanced low-rank tensor kriging approach
Tong Nie
Guoyang Qin
Yunpeng Wang
Jian-jun Sun
19
24
0
21 Oct 2022
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Alessio Gravina
D. Bacciu
Claudio Gallicchio
GNN
11
50
0
18 Oct 2022
Modular Flows: Differential Molecular Generation
Modular Flows: Differential Molecular Generation
Yogesh Verma
Samuel Kaski
Markus Heinonen
Vikas K. Garg
19
14
0
12 Oct 2022
Generalized energy and gradient flow via graph framelets
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
70
13
0
08 Oct 2022
Representing Spatial Trajectories as Distributions
Representing Spatial Trajectories as Distributions
Dídac Surís
Carl Vondrick
19
5
0
04 Oct 2022
Gradient Gating for Deep Multi-Rate Learning on Graphs
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
74
53
0
02 Oct 2022
Provably expressive temporal graph networks
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
87
54
0
29 Sep 2022
Graph Anomaly Detection with Graph Neural Networks: Current Status and
  Challenges
Graph Anomaly Detection with Graph Neural Networks: Current Status and Challenges
Hwan Kim
Byung Suk Lee
Won-Yong Shin
Sungsu Lim
GNN
17
66
0
29 Sep 2022
Diffusion Unit: Interpretable Edge Enhancement and Suppression Learning
  for 3D Point Cloud Segmentation
Diffusion Unit: Interpretable Edge Enhancement and Suppression Learning for 3D Point Cloud Segmentation
H. Xiu
Xin Liu
Weimin Wang
Kyoung-Sook Kim
T. Shinohara
Qiong Chang
M. Matsuoka
3DPC
37
11
0
20 Sep 2022
On the Robustness of Graph Neural Diffusion to Topology Perturbations
On the Robustness of Graph Neural Diffusion to Topology Perturbations
Yang Song
Qiyu Kang
Sijie Wang
Zhao Kai
Wee Peng Tay
DiffM
AAML
48
35
0
16 Sep 2022
pathGCN: Learning General Graph Spatial Operators from Paths
pathGCN: Learning General Graph Spatial Operators from Paths
Moshe Eliasof
E. Haber
Eran Treister
3DPC
GNN
23
26
0
15 Jul 2022
Equivariant Hypergraph Diffusion Neural Operators
Equivariant Hypergraph Diffusion Neural Operators
Peihao Wang
Shenghao Yang
Yunyu Liu
Zhangyang Wang
Pan Li
DiffM
22
33
0
14 Jul 2022
Structural Inference of Networked Dynamical Systems with Universal
  Differential Equations
Structural Inference of Networked Dynamical Systems with Universal Differential Equations
James Koch
Zhao Chen
Aaron Tuor
Ján Drgoňa
D. Vrabie
PINN
24
10
0
11 Jul 2022
Physics-Informed Deep Neural Operator Networks
Physics-Informed Deep Neural Operator Networks
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
23
98
0
08 Jul 2022
Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud
  Understanding
Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud Understanding
H. Xiu
Xin Liu
Weimin Wang
Kyoung-Sook Kim
T. Shinohara
Qiong Chang
M. Matsuoka
DiffM
3DPC
6
0
0
04 Jul 2022
Optimization-Induced Graph Implicit Nonlinear Diffusion
Optimization-Induced Graph Implicit Nonlinear Diffusion
Qi Chen
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
DiffM
48
32
0
29 Jun 2022
Learning the Solution Operator of Boundary Value Problems using Graph
  Neural Networks
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks
Winfried Lotzsch
Simon Ohler
Johannes Otterbach
AI4CE
13
18
0
28 Jun 2022
Understanding convolution on graphs via energies
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
18
43
0
22 Jun 2022
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle
  Phase Transition
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Yuelin Wang
Kai Yi
Xinliang Liu
Yu Guang Wang
Shi Jin
8
33
0
11 Jun 2022
Inverse Boundary Value and Optimal Control Problems on Graphs: A Neural
  and Numerical Synthesis
Inverse Boundary Value and Optimal Control Problems on Graphs: A Neural and Numerical Synthesis
Mehdi Garrousian
Amirhossein Nouranizadeh
8
0
0
06 Jun 2022
Restructuring Graph for Higher Homophily via Adaptive Spectral
  Clustering
Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering
Shouheng Li
Dongwoo Kim
Qing Wang
13
14
0
06 Jun 2022
Capturing Graphs with Hypo-Elliptic Diffusions
Capturing Graphs with Hypo-Elliptic Diffusions
Csaba Tóth
Darrick Lee
Celia Hacker
Harald Oberhauser
16
12
0
27 May 2022
Equivariant Mesh Attention Networks
Equivariant Mesh Attention Networks
Sourya Basu
Jose Gallego-Posada
Francesco Vigano
J. Rowbottom
Taco S. Cohen
3DPC
MDE
AI4CE
41
10
0
21 May 2022
Scalable algorithms for physics-informed neural and graph networks
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
59
39
0
16 May 2022
Learning Label Initialization for Time-Dependent Harmonic Extension
Learning Label Initialization for Time-Dependent Harmonic Extension
A. Azad
17
1
0
03 May 2022
Graph Anisotropic Diffusion
Graph Anisotropic Diffusion
Ahmed A. A. Elhag
Gabriele Corso
Hannes Stärk
Michael M. Bronstein
DiffM
GNN
17
0
0
30 Apr 2022
Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs
Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs
Justin Baker
Hedi Xia
Yiwei Wang
E. Cherkaev
A. Narayan
Long Chen
Jack Xin
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
9
5
0
19 Apr 2022
A Survey on Graph Representation Learning Methods
A Survey on Graph Representation Learning Methods
Shima Khoshraftar
A. An
GNN
AI4TS
27
108
0
04 Apr 2022
Incorporating Heterophily into Graph Neural Networks for Graph
  Classification
Incorporating Heterophily into Graph Neural Networks for Graph Classification
Jiayi Yang
Sourav Medya
Wei Ye
20
4
0
15 Mar 2022
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
  Oversmoothing in GNNs
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cristian Bodnar
Francesco Di Giovanni
B. Chamberlain
Pietro Lio'
Michael M. Bronstein
24
167
0
09 Feb 2022
Graph-Coupled Oscillator Networks
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
31
101
0
04 Feb 2022
GOPHER: Categorical probabilistic forecasting with graph structure via
  local continuous-time dynamics
GOPHER: Categorical probabilistic forecasting with graph structure via local continuous-time dynamics
Ke Alexander Wang
Danielle C. Maddix
Yuyang Wang
AI4CE
19
1
0
18 Dec 2021
Previous
1234
Next