ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11692
  4. Cited By
A Reduction-Based Framework for Conservative Bandits and Reinforcement
  Learning

A Reduction-Based Framework for Conservative Bandits and Reinforcement Learning

22 June 2021
Yunchang Yang
Tianhao Wu
Han Zhong
Evrard Garcelon
Matteo Pirotta
A. Lazaric
Liwei Wang
S. Du
    OffRL
ArXivPDFHTML

Papers citing "A Reduction-Based Framework for Conservative Bandits and Reinforcement Learning"

4 / 4 papers shown
Title
Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for
  LLM Alignment
Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment
Tianhao Wu
Banghua Zhu
Ruoyu Zhang
Zhaojin Wen
Kannan Ramchandran
Jiantao Jiao
44
54
0
30 Sep 2023
Learning for Edge-Weighted Online Bipartite Matching with Robustness
  Guarantees
Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees
Pengfei Li
Jianyi Yang
Shaolei Ren
OffRL
27
4
0
31 May 2023
UCB Momentum Q-learning: Correcting the bias without forgetting
UCB Momentum Q-learning: Correcting the bias without forgetting
Pierre Menard
O. D. Domingues
Xuedong Shang
Michal Valko
79
40
0
01 Mar 2021
Provably Efficient Reinforcement Learning with Linear Function
  Approximation Under Adaptivity Constraints
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
122
166
0
06 Jan 2021
1