ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11756
  4. Cited By
Trinity: A No-Code AI platform for complex spatial datasets

Trinity: A No-Code AI platform for complex spatial datasets

21 June 2021
C. V. K. Iyer
Feili Hou
Henry Wang
Yonghong Wang
Kay Oh
Swetava Ganguli
Vipul Pandey
    SyDa
ArXivPDFHTML

Papers citing "Trinity: A No-Code AI platform for complex spatial datasets"

10 / 10 papers shown
Title
Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual
  Framework, Potentials and Limitations
Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual Framework, Potentials and Limitations
Mario Truss
Marc Schmitt
21
1
0
06 Feb 2024
Temporal Embeddings: Scalable Self-Supervised Temporal Representation
  Learning from Spatiotemporal Data for Multimodal Computer Vision
Temporal Embeddings: Scalable Self-Supervised Temporal Representation Learning from Spatiotemporal Data for Multimodal Computer Vision
Yi Cao
Swetava Ganguli
Vipul Pandey
AI4TS
4
0
0
16 Oct 2023
SeMAnD: Self-Supervised Anomaly Detection in Multimodal Geospatial
  Datasets
SeMAnD: Self-Supervised Anomaly Detection in Multimodal Geospatial Datasets
Daria Reshetova
Swetava Ganguli
C. V. K. Iyer
Vipul Pandey
18
3
0
26 Sep 2023
Self-Supervised Temporal Analysis of Spatiotemporal Data
Self-Supervised Temporal Analysis of Spatiotemporal Data
Yi Cao
Swetava Ganguli
Vipul Pandey
AI4TS
20
2
0
25 Apr 2023
End-User Development for Artificial Intelligence: A Systematic
  Literature Review
End-User Development for Artificial Intelligence: A Systematic Literature Review
Andrea Esposito
Miriana Calvano
Antonio Curci
Giuseppe Desolda
R. Lanzilotti
Claudia Lorusso
Antonio Piccinno
12
5
0
14 Apr 2023
GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
  Intelligence Research
GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial Intelligence Research
D. Lunga
Yingjie Hu
Shawn D. Newsam
Song Gao
B. Martins
Hsiuhan Lexie Yang
XueQing Deng
AI4CE
11
3
0
20 Oct 2022
Scalable Self-Supervised Representation Learning from Spatiotemporal
  Motion Trajectories for Multimodal Computer Vision
Scalable Self-Supervised Representation Learning from Spatiotemporal Motion Trajectories for Multimodal Computer Vision
Swetava Ganguli
C. V. K. Iyer
Vipul Pandey
SSL
10
5
0
07 Oct 2022
VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and
  Feature-level Geospatial Conditional Inputs
VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and Feature-level Geospatial Conditional Inputs
Xuerong Xiao
Swetava Ganguli
Vipul Pandey
GAN
21
14
0
08 Dec 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,568
0
09 Mar 2017
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
423
15,438
0
02 Nov 2015
1