ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11795
  4. Cited By
DeepMesh: Differentiable Iso-Surface Extraction

DeepMesh: Differentiable Iso-Surface Extraction

20 June 2021
Benoît Guillard
Edoardo Remelli
Artem Lukoianov
Stephan R. Richter
Timur M. Bagautdinov
Pierre Baqué
Pascal Fua
    AI4CE
ArXivPDFHTML

Papers citing "DeepMesh: Differentiable Iso-Surface Extraction"

7 / 7 papers shown
Title
A Latent Implicit 3D Shape Model for Multiple Levels of Detail
A Latent Implicit 3D Shape Model for Multiple Levels of Detail
Benoît Guillard
Marc Habermann
Christian Theobalt
Pascal Fua
3DV
51
1
0
10 Sep 2024
Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering
Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering
Tin Vlašić
Hieu Nguyen
AmirEhsan Khorashadizadeh
Ivan Dokmanić
3DV
AI4CE
19
10
0
04 Jun 2022
Development of a deep learning platform for optimising sheet stamping
  geometries subject to manufacturing constraints
Development of a deep learning platform for optimising sheet stamping geometries subject to manufacturing constraints
H. Attar
A. Foster
Nan Li
24
3
0
04 Feb 2022
DEBOSH: Deep Bayesian Shape Optimization
DEBOSH: Deep Bayesian Shape Optimization
N. Durasov
Artem Lukoyanov
Jonathan Donier
Pascal Fua
UQCV
AI4CE
38
15
0
28 Sep 2021
HybridSDF: Combining Deep Implicit Shapes and Geometric Primitives for
  3D Shape Representation and Manipulation
HybridSDF: Combining Deep Implicit Shapes and Geometric Primitives for 3D Shape Representation and Manipulation
Subeesh Vasu
Nicolas Talabot
Artem Lukoianov
Pierre Baqué
Jonathan Donier
Pascal Fua
36
4
0
22 Sep 2021
Convolutional Occupancy Networks
Convolutional Occupancy Networks
Songyou Peng
Michael Niemeyer
L. Mescheder
Marc Pollefeys
Andreas Geiger
3DV
AI4CE
232
971
0
10 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1