Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.12619
Cited By
Machine learning structure preserving brackets for forecasting irreversible processes
23 June 2021
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine learning structure preserving brackets for forecasting irreversible processes"
29 / 29 papers shown
Title
Equilibrium Conserving Neural Operators for Super-Resolution Learning
Vivek Oommen
Andreas E. Robertson
Daniel Diaz
Coleman Alleman
Zhen Zhang
Anthony D. Rollett
George Karniadakis
Rémi Dingreville
33
1
0
18 Apr 2025
Efficiently Parameterized Neural Metriplectic Systems
Anthony Gruber
Kookjin Lee
Haksoo Lim
Noseong Park
Nathaniel Trask
58
1
0
28 Jan 2025
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Sanghyun Hong
Fan Wu
A. Gruber
Kookjin Lee
42
0
0
12 Jan 2025
Recovering implicit physics model under real-world constraints
Ayan Banerjee
Sandeep K. S. Gupta
PINN
AI4CE
66
1
0
03 Dec 2024
Parameterized Physics-informed Neural Networks for Parameterized PDEs
Woojin Cho
Minju Jo
Haksoo Lim
Kookjin Lee
Dongeun Lee
Sanghyun Hong
Noseong Park
PINN
AI4CE
30
15
1
18 Aug 2024
Graph neural networks informed locally by thermodynamics
Alicia Tierz
Ic´ıar Alfaro
David González
Francisco Chinesta
Elías Cueto
AI4CE
PINN
68
0
0
21 May 2024
A Comprehensive Review of Latent Space Dynamics Identification Algorithms for Intrusive and Non-Intrusive Reduced-Order-Modeling
Christophe Bonneville
Xiaolong He
April Tran
Jun Sur Richard Park
William D. Fries
...
David M. Bortz
Debojyoti Ghosh
Jiun-Shyan Chen
Jonathan Belof
Youngsoo Choi
AI4CE
29
7
0
16 Mar 2024
tLaSDI: Thermodynamics-informed latent space dynamics identification
Jun Sur Richard Park
Siu Wun Cheung
Youngsoo Choi
Yeonjong Shin
AI4CE
11
4
0
09 Mar 2024
Thermodynamics-informed super-resolution of scarce temporal dynamics data
Carlos Bermejo-Barbanoj
B. Moya
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
14
2
0
27 Feb 2024
Neural oscillators for generalization of physics-informed machine learning
Taniya Kapoor
Abhishek Chandra
D. Tartakovsky
Hongrui Wang
Alfredo Núñez
R. Dollevoet
AI4CE
19
10
0
17 Aug 2023
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
25
9
0
24 May 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
25
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Climate Intervention Analysis using AI Model Guided by Statistical Physics Principles
S. K. Kim
Kalai Ramea
Salva Rühling Cachay
H. Hirasawa
Subhashis Hazarika
D. Hingmire
Peetak Mitra
P. Rasch
Hansi K. A. Singh
AI4CE
25
0
0
07 Feb 2023
Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
27
13
0
03 Nov 2022
Mining Causality from Continuous-time Dynamics Models: An Application to Tsunami Forecasting
Fan Wu
Sanghyun Hong
Dobsub Rim
Noseong Park
Kookjin Lee
AI4TS
29
1
0
10 Oct 2022
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
37
12
0
23 Sep 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
23
22
0
26 Jul 2022
AdamNODEs: When Neural ODE Meets Adaptive Moment Estimation
Suneghyeon Cho
Sanghyun Hong
Kookjin Lee
Noseong Park
13
2
0
13 Jul 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
59
40
0
16 May 2022
A Thermodynamics-informed Active Learning Approach to Perception and Reasoning about Fluids
B. Moya
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
AI4CE
10
12
0
11 Mar 2022
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
25
31
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
13
39
0
10 Feb 2022
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
14
58
0
21 Oct 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
30
24
0
11 Sep 2021
GFINNs: GENERIC Formalism Informed Neural Networks for Deterministic and Stochastic Dynamical Systems
Zhen Zhang
Yeonjong Shin
George Karniadakis
AI4CE
17
51
0
31 Aug 2021
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
127
422
0
10 Mar 2020
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
141
219
0
29 Sep 2019
1