Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2106.14334
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14 (latest)
Policy Regularization via Noisy Advantage Values for Cooperative Multi-agent Actor-Critic methods
27 June 2021
Jian Hu
Siyue Hu
Shih-Wei Liao
Re-assign community
ArXiv (abs)
PDF
HTML
Github (62★)
Papers citing
"Policy Regularization via Noisy Advantage Values for Cooperative Multi-agent Actor-Critic methods"
6 / 6 papers shown
Guidelines for Applying RL and MARL in Cybersecurity Applications
V. Mavroudis
Gregory Palmer
Sara Farmer
Kez Smithson Whitehead
David Foster
Adam Price
Ian Miles
Alberto Caron
Stephen Pasteris
AAML
227
1
0
06 Mar 2025
Leveraging Graph Neural Networks and Multi-Agent Reinforcement Learning for Inventory Control in Supply Chains
Niki Kotecha
Antonio del Rio Chanona
197
5
0
24 Oct 2024
MBC: Multi-Brain Collaborative Control for Quadruped Robots
Conference on Robot Learning (CoRL), 2024
Hang Liu
Yi Cheng
Rankun Li
Xiaowen Hu
Linqi Ye
Houde Liu
206
2
0
24 Sep 2024
Stimulate the Potential of Robots via Competition
K. Huang
Di Guo
Xinyu Zhang
Xiangyang Ji
Huaping Liu
301
3
0
15 Mar 2024
Optimistic Multi-Agent Policy Gradient
International Conference on Machine Learning (ICML), 2023
Wenshuai Zhao
Yi Zhao
Zhiyuan Li
Arno Solin
Joni Pajarinen
295
5
0
03 Nov 2023
Reinforcement learning for traffic signal control in hybrid action space
Haoqing Luo
Sheng Jin
165
15
0
23 Nov 2022
1