ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15356
  4. Cited By
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors

Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors

26 June 2021
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
ArXivPDFHTML

Papers citing "Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors"

11 / 11 papers shown
Title
Improving Hyperparameter Optimization with Checkpointed Model Weights
Improving Hyperparameter Optimization with Checkpointed Model Weights
Nikhil Mehta
Jonathan Lorraine
Steve Masson
Ramanathan Arunachalam
Zaid Pervaiz Bhat
James Lucas
Arun George Zachariah
33
4
0
26 Jun 2024
Interpretable Multi-Source Data Fusion Through Latent Variable Gaussian
  Process
Interpretable Multi-Source Data Fusion Through Latent Variable Gaussian Process
S. Ravi
Yigitcan Comlek
Wei-Neng Chen
Arjun Pathak
Vipul Gupta
...
Ghanshyam Pilania
Piyush Pandita
Sayan Ghosh
Nathaniel Mckeever
Liping Wang
8
1
0
06 Feb 2024
A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive
  Sampling
A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive Sampling
Yi-Ping Chen
Liwei Wang
Yigitcan Comlek
Wei-Neng Chen
14
10
0
05 Oct 2023
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Doksoo Lee
Wei-Neng Chen
Liwei Wang
Yu-Chin Chan
Wei Chen
AI4CE
11
78
0
01 Jul 2023
Image-based Artificial Intelligence empowered surrogate model and shape
  morpher for real-time blank shape optimisation in the hot stamping process
Image-based Artificial Intelligence empowered surrogate model and shape morpher for real-time blank shape optimisation in the hot stamping process
Hao Zhou
Nan Li
AI4CE
21
1
0
01 Dec 2022
Multi-Fidelity Cost-Aware Bayesian Optimization
Multi-Fidelity Cost-Aware Bayesian Optimization
Zahra Zanjani Foumani
Mehdi Shishehbor
Amin Yousefpour
Ramin Bostanabad
16
48
0
04 Nov 2022
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Hengrui Zhang
WeiWayneChen
Akshay Iyer
D. Apley
Wei-Neng Chen
AI4CE
31
11
0
11 Jul 2022
Forward variable selection enables fast and accurate dynamic system
  identification with Karhunen-Loève decomposed Gaussian processes
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
17
0
0
26 May 2022
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
35
94
0
02 Mar 2020
Local Gaussian process approximation for large computer experiments
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
98
391
0
02 Mar 2013
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
59
168
0
29 May 2012
1