ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00090
  4. Cited By
Mesh-based graph convolutional neural networks for modeling materials
  with microstructure

Mesh-based graph convolutional neural networks for modeling materials with microstructure

4 June 2021
A. Frankel
C. Safta
Coleman Alleman
Reese E. Jones
ArXivPDFHTML

Papers citing "Mesh-based graph convolutional neural networks for modeling materials with microstructure"

3 / 3 papers shown
Title
A heteroencoder architecture for prediction of failure locations in
  porous metals using variational inference
A heteroencoder architecture for prediction of failure locations in porous metals using variational inference
Wyatt Bridgman
Xiaoxuan Zhang
G. Teichert
M. Khalil
K. Garikipati
Reese E. Jones
UQCV
AI4CE
16
5
0
31 Jan 2022
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
230
7,903
0
13 Jun 2015
1