ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00243
  4. Cited By
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization

Preconditioning for Scalable Gaussian Process Hyperparameter Optimization

1 July 2021
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
J. Gardner
ArXivPDFHTML

Papers citing "Preconditioning for Scalable Gaussian Process Hyperparameter Optimization"

13 / 13 papers shown
Title
Scalable Computations for Generalized Mixed Effects Models with Crossed Random Effects Using Krylov Subspace Methods
Scalable Computations for Generalized Mixed Effects Models with Crossed Random Effects Using Krylov Subspace Methods
Pascal Kündig
Fabio Sigrist
14
0
0
14 May 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
51
1
0
01 Apr 2025
Computation-Aware Gaussian Processes: Model Selection And Linear-Time
  Inference
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
27
5
0
01 Nov 2024
Calibrated Computation-Aware Gaussian Processes
Calibrated Computation-Aware Gaussian Processes
Disha Hegde
Mohamed Adil
Jon Cockayne
16
4
0
11 Oct 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz
  Preconditioner
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
27
0
0
01 Aug 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
34
0
0
27 May 2024
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process
  Regression
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process Regression
Lu Zou
Liang Ding
31
0
0
20 Mar 2024
Data-Driven Model Selections of Second-Order Particle Dynamics via
  Integrating Gaussian Processes with Low-Dimensional Interacting Structures
Data-Driven Model Selections of Second-Order Particle Dynamics via Integrating Gaussian Processes with Low-Dimensional Interacting Structures
Jinchao Feng
Charles Kulick
Sui Tang
24
2
0
01 Nov 2023
Implicit Manifold Gaussian Process Regression
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
9
3
0
30 Oct 2023
Large-Scale Gaussian Processes via Alternating Projection
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Haydn Jones
Geoff Pleiss
Jacob R. Gardner
35
7
0
26 Oct 2023
Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian
  Process Models
Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian Process Models
Pascal Kündig
Fabio Sigrist
13
2
0
18 Oct 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
  Estimation for Latent Gaussian Models
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
31
1
0
05 Jun 2023
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
72
19
0
30 May 2022
1