Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.00465
Cited By
Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC Optimal Power Flow
28 June 2021
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC Optimal Power Flow"
20 / 20 papers shown
Title
Differentiable Projection-based Learn to Optimize in Wireless Network-Part I: Convex Constrained (Non-)Convex Programming
Xiucheng Wang
Xuan Zhao
Nan Cheng
49
0
0
29 Jan 2025
Compact Optimality Verification for Optimization Proxies
Wenbo Chen
Haoruo Zhao
Mathieu Tanneau
Pascal Van Hentenryck
38
0
0
31 May 2024
Scalable Exact Verification of Optimization Proxies for Large-Scale Optimal Power Flow
Rahul Nellikkath
Mathieu Tanneau
Pascal Van Hentenryck
Spyros Chatzivasileiadis
47
0
0
09 May 2024
End-to-End Reinforcement Learning of Curative Curtailment with Partial Measurement Availability
Hinrikus Wolf
Luis Bottcher
Sarra Bouchkati
Philipp Lutat
Jens Breitung
...
Viktor Todosijević
Jan Schiefelbein-Lach
Oliver Pohl
Andreas Ulbig
Martin Grohe
21
0
0
06 May 2024
A Hybrid Approach of Transfer Learning and Physics-Informed Modeling: Improving Dissolved Oxygen Concentration Prediction in an Industrial Wastewater Treatment Plant
Ece S. Koksal
Erdal Aydin
PINN
AI4CE
31
0
0
20 Jan 2024
Robust Physics Informed Neural Networks
Marcin Lo's
Maciej Paszyñski
PINN
14
0
0
04 Jan 2024
Dual Conic Proxies for AC Optimal Power Flow
Guancheng Qiu
Mathieu Tanneau
Pascal Van Hentenryck
37
8
0
04 Oct 2023
AI Driven Near Real-time Locational Marginal Pricing Method: A Feasibility and Robustness Study
Naga Venkata Sai Jitin Jami
J. Kardoš
Olaf Schenk
Harald Kostler
23
0
0
16 Jun 2023
Self-supervised Equality Embedded Deep Lagrange Dual for Approximate Constrained Optimization
Minsoo Kim
Hongseok Kim
32
4
0
11 Jun 2023
End-to-End Feasible Optimization Proxies for Large-Scale Economic Dispatch
Wenbo Chen
Mathieu Tanneau
Pascal Van Hentenryck
34
30
0
23 Apr 2023
A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
Robert Ferrando
Laurent Pagnier
R. Mieth
Zhirui Liang
Y. Dvorkin
D. Bienstock
Michael Chertkov
26
7
0
31 Mar 2023
Enriching Neural Network Training Dataset to Improve Worst-Case Performance Guarantees
Rahul Nellikkath
Spyros Chatzivasileiadis
36
3
0
23 Mar 2023
Physics Informed Piecewise Linear Neural Networks for Process Optimization
Ece S. Koksal
E. Aydın
PINN
24
11
0
02 Feb 2023
Minimizing Worst-Case Violations of Neural Networks
Rahul Nellikkath
Spyros Chatzivasileiadis
38
3
0
21 Dec 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
29
14
0
06 May 2022
Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems
Jochen Stiasny
Samuel C. Chevalier
Rahul Nellikkath
Brynjar Sævarsson
Spyros Chatzivasileiadis
29
14
0
14 Mar 2022
Ensuring DNN Solution Feasibility for Optimization Problems with Convex Constraints and Its Application to DC Optimal Power Flow Problems
Tianyu Zhao
Xiang Pan
Minghua Chen
S. Low
27
10
0
15 Dec 2021
Physics-Informed Neural Networks for AC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
34
88
0
06 Oct 2021
Neural Networks for Encoding Dynamic Security-Constrained Optimal Power Flow
Daniel Timon Viola
Andreas Venzke
George S. Misyris
Spyros Chatzivasileiadis
24
38
0
17 Mar 2020
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
81
199
0
19 Sep 2019
1