Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.00940
Cited By
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
2 July 2021
S. Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks"
30 / 30 papers shown
Title
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
D. Veerababu
Prasanta K. Ghosh
73
0
0
26 Mar 2025
Estimation of the Acoustic Field in a Uniform Duct with Mean Flow using Neural Networks
D. Veerababu
Prasanta K. Ghosh
AI4CE
42
0
0
25 Mar 2025
Sample-Efficient Reinforcement Learning of Koopman eNMPC
Daniel Mayfrank
M. Velioglu
Alexander Mitsos
Manuel Dahmen
OffRL
41
0
0
24 Mar 2025
A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
Sumanth Kumar Boya
Deepak Subramani
AI4CE
94
0
0
12 Dec 2024
HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
Madison Cooley
Robert M. Kirby
Shandian Zhe
Varun Shankar
PINN
AI4CE
23
0
0
04 Oct 2024
Functional Tensor Decompositions for Physics-Informed Neural Networks
Sai Karthikeya Vemuri
Tim Buchner
Julia Niebling
Joachim Denzler
PINN
38
4
0
23 Aug 2024
Adapting Physics-Informed Neural Networks to Improve ODE Optimization in Mosquito Population Dynamics
D. V. Cuong
Branislava Lalić
Mina Petrić
Binh Nguyen
M. Roantree
PINN
AI4CE
47
0
0
07 Jun 2024
Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data
M. Velioglu
Song Zhai
Sophia Rupprecht
Alexander Mitsos
Andreas Jupke
Manuel Dahmen
PINN
AI4CE
44
4
0
03 Jun 2024
RoPINN: Region Optimized Physics-Informed Neural Networks
Haixu Wu
Huakun Luo
Yuezhou Ma
Jianmin Wang
Mingsheng Long
AI4CE
32
6
0
23 May 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
68
1
0
27 Apr 2024
PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks
Sifan Wang
Bowen Li
Yuhan Chen
P. Perdikaris
AI4CE
PINN
21
27
0
01 Feb 2024
Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans
Ray Zirui Zhang
Ivan Ezhov
Michal Balcerak
Andy Zhu
Benedikt Wiestler
Bjoern H. Menze
John S. Lowengrub
AI4CE
47
6
0
28 Nov 2023
Stochastic force inference via density estimation
Victor Chardès
S. Maddu
Michael J. Shelley
DiffM
11
3
0
03 Oct 2023
Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
S. Pérez
P. Poncet
25
3
0
24 Aug 2023
An Expert's Guide to Training Physics-informed Neural Networks
Sifan Wang
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
28
96
0
16 Aug 2023
Learning locally dominant force balances in active particle systems
D. Sturm
S. Maddu
I. Sbalzarini
13
1
0
27 Jul 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
29
29
0
15 Jun 2023
Maximum-likelihood Estimators in Physics-Informed Neural Networks for High-dimensional Inverse Problems
G. S. Gusmão
A. Medford
PINN
12
8
0
12 Apr 2023
PINN Training using Biobjective Optimization: The Trade-off between Data Loss and Residual Loss
Fabian Heldmann
Sarah Treibert
Matthias Ehrhardt
K. Klamroth
32
20
0
03 Feb 2023
LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on Complex Geometry
Jian Cheng Wong
P. Chiu
C. Ooi
M. Dao
Yew-Soon Ong
AI4CE
PINN
22
10
0
03 Feb 2023
Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Juan Esteban Suarez Cardona
Phil-Alexander Hofmann
Michael Hecht
11
2
0
12 Jan 2023
Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Juan Esteban Suarez Cardona
Michael Hecht
16
4
0
23 Nov 2022
Physics-Informed Koopman Network
Yuying Liu
A. Sholokhov
Hassan Mansour
S. Nabi
AI4CE
25
3
0
17 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
25
89
0
15 Nov 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
17
4
0
14 Oct 2022
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
36
17
0
25 Mar 2022
Respecting causality is all you need for training physics-informed neural networks
Sifan Wang
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
30
199
0
14 Mar 2022
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
23
39
0
03 May 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
758
0
13 Mar 2020
1