Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.01154
Cited By
Gradient-Leakage Resilient Federated Learning
2 July 2021
Wenqi Wei
Ling Liu
Yanzhao Wu
Gong Su
Arun Iyengar
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-Leakage Resilient Federated Learning"
34 / 34 papers shown
Title
Improving Efficiency in Federated Learning with Optimized Homomorphic Encryption
Feiran Yang
FedML
55
0
0
03 Apr 2025
Towards Resilient Federated Learning in CyberEdge Networks: Recent Advances and Future Trends
Kai Li
Zhengyang Zhang
Azadeh Pourkabirian
Wei Ni
Falko Dressler
Ozgur B. Akan
48
0
0
01 Apr 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
X. Zhang
Ninghui Li
90
1
0
28 Jan 2025
Fed-AugMix: Balancing Privacy and Utility via Data Augmentation
HaoYang Li
Wei Chen
Xiaojin Zhang
FedML
68
0
0
18 Dec 2024
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
18
0
0
11 Oct 2024
In-depth Analysis of Privacy Threats in Federated Learning for Medical Data
B. Das
M. H. Amini
Yanzhao Wu
29
0
0
27 Sep 2024
Data Poisoning and Leakage Analysis in Federated Learning
Wenqi Wei
Tiansheng Huang
Zachary Yahn
Anoop Singhal
Margaret Loper
Ling Liu
FedML
SILM
20
0
0
19 Sep 2024
Mjolnir: Breaking the Shield of Perturbation-Protected Gradients via Adaptive Diffusion
Xuan Liu
Siqi Cai
Qihua Zhou
Song Guo
Ruibin Li
Kaiwei Lin
DiffM
AAML
24
1
0
07 Jul 2024
Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks
Yichang Xu
Ming Yin
Minghong Fang
Neil Zhenqiang Gong
OOD
FedML
36
6
0
05 Mar 2024
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
23
16
0
02 Feb 2024
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
29
19
0
27 Nov 2023
Privacy Risks Analysis and Mitigation in Federated Learning for Medical Images
B. Das
M. H. Amini
Yanzhao Wu
23
7
0
11 Nov 2023
PA-iMFL: Communication-Efficient Privacy Amplification Method against Data Reconstruction Attack in Improved Multi-Layer Federated Learning
Jianhua Wang
Xiaolin Chang
Jelena Mivsić
Vojislav B. Mivsić
Zhi Chen
Junchao Fan
39
2
0
25 Sep 2023
Understanding Deep Gradient Leakage via Inversion Influence Functions
Haobo Zhang
Junyuan Hong
Yuyang Deng
M. Mahdavi
Jiayu Zhou
FedML
50
6
0
22 Sep 2023
RAI4IoE: Responsible AI for Enabling the Internet of Energy
Minhui Xue
Surya Nepal
Ling Liu
Subbu Sethuvenkatraman
Xingliang Yuan
Carsten Rudolph
Ruoxi Sun
Greg Eisenhauer
19
4
0
20 Sep 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
30
23
0
20 Jul 2023
Towards Open Federated Learning Platforms: Survey and Vision from Technical and Legal Perspectives
Moming Duan
Qinbin Li
Linshan Jiang
Bingsheng He
FedML
26
4
0
05 Jul 2023
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Xiaojin Zhang
Wenjie Li
Kai Chen
Shutao Xia
Qian Yang
FedML
9
9
0
24 May 2023
Securing Distributed SGD against Gradient Leakage Threats
Wenqi Wei
Ling Liu
Jingya Zhou
Ka-Ho Chow
Yanzhao Wu
FedML
16
18
0
10 May 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
J. Ma
FedML
12
2
0
06 May 2023
RecUP-FL: Reconciling Utility and Privacy in Federated Learning via User-configurable Privacy Defense
Yue-li Cui
Syed Imran Ali Meerza
Zhuohang Li
Luyang Liu
Jiaxin Zhang
Jian-Dong Liu
AAML
FedML
21
4
0
11 Apr 2023
CATFL: Certificateless Authentication-based Trustworthy Federated Learning for 6G Semantic Communications
Gaolei Li
Yuanyuan Zhao
Yi Li
11
13
0
01 Feb 2023
Social-Aware Clustered Federated Learning with Customized Privacy Preservation
Yuntao Wang
Zhou Su
Yanghe Pan
Tom H. Luan
Ruidong Li
Shui Yu
FedML
18
17
0
25 Dec 2022
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
32
0
0
05 Dec 2022
Flow: Per-Instance Personalized Federated Learning Through Dynamic Routing
Kunjal Panchal
Sunav Choudhary
Nisarg Parikh
Lijun Zhang
Hui Guan
26
5
0
28 Nov 2022
Mixed Precision Quantization to Tackle Gradient Leakage Attacks in Federated Learning
Pretom Roy Ovi
Emon Dey
Nirmalya Roy
A. Gangopadhyay
FedML
16
4
0
22 Oct 2022
Concealing Sensitive Samples against Gradient Leakage in Federated Learning
Jing Wu
Munawar Hayat
Min Zhou
Mehrtash Harandi
FedML
11
9
0
13 Sep 2022
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
27
36
0
15 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
26
46
0
08 Jun 2022
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Zhuohang Li
Jiaxin Zhang
Lu Liu
Jian-Dong Liu
FedML
14
114
0
29 Mar 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
29
210
0
20 Jan 2022
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
18
9
0
19 Dec 2021
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
14
41
0
08 Nov 2021
Mechanism Design in Large Games: Incentives and Privacy
Michael Kearns
Mallesh M. Pai
Aaron Roth
Jonathan R. Ullman
80
182
0
17 Jul 2012
1