ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04086
  4. Cited By
Robust Counterfactual Explanations on Graph Neural Networks

Robust Counterfactual Explanations on Graph Neural Networks

8 July 2021
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
    OOD
ArXivPDFHTML

Papers citing "Robust Counterfactual Explanations on Graph Neural Networks"

13 / 13 papers shown
Title
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
47
0
0
19 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI
F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI
Xu Zheng
Farhad Shirani
Zhuomin Chen
Chaohao Lin
Wei Cheng
Wenbo Guo
Dongsheng Luo
AAML
28
0
0
03 Oct 2024
Explainable Graph Neural Networks Under Fire
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
36
0
0
10 Jun 2024
A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
  Privacy and OOD Challenges
A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Wei Ju
Siyu Yi
Yifan Wang
Zhiping Xiao
Zhengyan Mao
...
Senzhang Wang
Xinwang Liu
Xiao Luo
Philip S. Yu
Ming Zhang
AI4CE
34
36
0
07 Mar 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
33
2
0
19 Dec 2023
Robust Stochastic Graph Generator for Counterfactual Explanations
Robust Stochastic Graph Generator for Counterfactual Explanations
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
CML
6
3
0
18 Dec 2023
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Kha-Dinh Luong
Mert Kosan
A. Silva
Ambuj K. Singh
30
6
0
25 May 2023
GANExplainer: GAN-based Graph Neural Networks Explainer
GANExplainer: GAN-based Graph Neural Networks Explainer
Yiqiao Li
Jianlong Zhou
Boyuan Zheng
Fang Chen
LLMAG
29
4
0
30 Dec 2022
Global Counterfactual Explainer for Graph Neural Networks
Global Counterfactual Explainer for Graph Neural Networks
Mert Kosan
Zexi Huang
Sourav Medya
Sayan Ranu
Ambuj K. Singh
19
47
0
21 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
17
52
0
16 Oct 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised
  Classification
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
20
20
0
07 Dec 2020
1