ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04474
  4. Cited By
Interpretable Compositional Convolutional Neural Networks

Interpretable Compositional Convolutional Neural Networks

9 July 2021
Wen Shen
Zhihua Wei
Shikun Huang
Binbin Zhang
Jiaqi Fan
Ping Zhao
Quanshi Zhang
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Interpretable Compositional Convolutional Neural Networks"

14 / 14 papers shown
Title
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
158
0
0
24 Feb 2025
Layerwise Change of Knowledge in Neural Networks
Layerwise Change of Knowledge in Neural Networks
Xu Cheng
Lei Cheng
Zhaoran Peng
Yang Xu
Tian Han
Quanshi Zhang
KELMFAtt
74
5
0
13 Sep 2024
Improving Network Interpretability via Explanation Consistency
  Evaluation
Improving Network Interpretability via Explanation Consistency Evaluation
Hefeng Wu
Hao Jiang
Keze Wang
Ziyi Tang
Xianghuan He
Liang Lin
FAttAAML
95
0
0
08 Aug 2024
Don't Forget Too Much: Towards Machine Unlearning on Feature Level
Don't Forget Too Much: Towards Machine Unlearning on Feature Level
Heng Xu
Tianqing Zhu
Wanlei Zhou
Wei Zhao
MU
80
5
0
16 Jun 2024
Path Choice Matters for Clear Attribution in Path Methods
Path Choice Matters for Clear Attribution in Path Methods
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
75
2
0
19 Jan 2024
A Large-Scale Empirical Study on Improving the Fairness of Image
  Classification Models
A Large-Scale Empirical Study on Improving the Fairness of Image Classification Models
Junjie Yang
Jiajun Jiang
Zeyu Sun
Junjie Chen
61
3
0
08 Jan 2024
PICNN: A Pathway towards Interpretable Convolutional Neural Networks
PICNN: A Pathway towards Interpretable Convolutional Neural Networks
Wengang Guo
Jiayi Yang
Huilin Yin
Qijun Chen
Wei Ye
57
3
0
19 Dec 2023
Adversarial Attacks on the Interpretation of Neuron Activation
  Maximization
Adversarial Attacks on the Interpretation of Neuron Activation Maximization
Géraldin Nanfack
A. Fulleringer
Jonathan Marty
Michael Eickenberg
Eugene Belilovsky
AAMLFAtt
69
11
0
12 Jun 2023
DBAT: Dynamic Backward Attention Transformer for Material Segmentation
  with Cross-Resolution Patches
DBAT: Dynamic Backward Attention Transformer for Material Segmentation with Cross-Resolution Patches
Yuwen Heng
S. Dasmahapatra
Hansung Kim
112
1
0
06 May 2023
Bort: Towards Explainable Neural Networks with Bounded Orthogonal
  Constraint
Bort: Towards Explainable Neural Networks with Bounded Orthogonal Constraint
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
88
7
0
18 Dec 2022
ME-D2N: Multi-Expert Domain Decompositional Network for Cross-Domain
  Few-Shot Learning
ME-D2N: Multi-Expert Domain Decompositional Network for Cross-Domain Few-Shot Learning
Yu Fu
Yu Xie
Yanwei Fu
Jingjing Chen
Yu-Gang Jiang
77
16
0
11 Oct 2022
TCNL: Transparent and Controllable Network Learning Via Embedding
  Human-Guided Concepts
TCNL: Transparent and Controllable Network Learning Via Embedding Human-Guided Concepts
Zhihao Wang
Chuang Zhu
44
1
0
07 Oct 2022
Quantifying the Knowledge in a DNN to Explain Knowledge Distillation for
  Classification
Quantifying the Knowledge in a DNN to Explain Knowledge Distillation for Classification
Quanshi Zhang
Xu Cheng
Yilan Chen
Zhefan Rao
56
37
0
18 Aug 2022
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
123
233
0
25 Feb 2021
1