Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.04474
Cited By
Interpretable Compositional Convolutional Neural Networks
9 July 2021
Wen Shen
Zhihua Wei
Shikun Huang
Binbin Zhang
Jiaqi Fan
Ping Zhao
Quanshi Zhang
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Interpretable Compositional Convolutional Neural Networks"
14 / 14 papers shown
Title
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
158
0
0
24 Feb 2025
Layerwise Change of Knowledge in Neural Networks
Xu Cheng
Lei Cheng
Zhaoran Peng
Yang Xu
Tian Han
Quanshi Zhang
KELM
FAtt
74
5
0
13 Sep 2024
Improving Network Interpretability via Explanation Consistency Evaluation
Hefeng Wu
Hao Jiang
Keze Wang
Ziyi Tang
Xianghuan He
Liang Lin
FAtt
AAML
95
0
0
08 Aug 2024
Don't Forget Too Much: Towards Machine Unlearning on Feature Level
Heng Xu
Tianqing Zhu
Wanlei Zhou
Wei Zhao
MU
80
5
0
16 Jun 2024
Path Choice Matters for Clear Attribution in Path Methods
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
75
2
0
19 Jan 2024
A Large-Scale Empirical Study on Improving the Fairness of Image Classification Models
Junjie Yang
Jiajun Jiang
Zeyu Sun
Junjie Chen
61
3
0
08 Jan 2024
PICNN: A Pathway towards Interpretable Convolutional Neural Networks
Wengang Guo
Jiayi Yang
Huilin Yin
Qijun Chen
Wei Ye
57
3
0
19 Dec 2023
Adversarial Attacks on the Interpretation of Neuron Activation Maximization
Géraldin Nanfack
A. Fulleringer
Jonathan Marty
Michael Eickenberg
Eugene Belilovsky
AAML
FAtt
69
11
0
12 Jun 2023
DBAT: Dynamic Backward Attention Transformer for Material Segmentation with Cross-Resolution Patches
Yuwen Heng
S. Dasmahapatra
Hansung Kim
112
1
0
06 May 2023
Bort: Towards Explainable Neural Networks with Bounded Orthogonal Constraint
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
88
7
0
18 Dec 2022
ME-D2N: Multi-Expert Domain Decompositional Network for Cross-Domain Few-Shot Learning
Yu Fu
Yu Xie
Yanwei Fu
Jingjing Chen
Yu-Gang Jiang
77
16
0
11 Oct 2022
TCNL: Transparent and Controllable Network Learning Via Embedding Human-Guided Concepts
Zhihao Wang
Chuang Zhu
44
1
0
07 Oct 2022
Quantifying the Knowledge in a DNN to Explain Knowledge Distillation for Classification
Quanshi Zhang
Xu Cheng
Yilan Chen
Zhefan Rao
56
37
0
18 Aug 2022
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
123
233
0
25 Feb 2021
1